class MetaController: def __init__( self, controller, gru0_size=128, ): #image observation at current tick goes here self.observed_state = InputLayer(controller.dnn_output.output_shape, name="cnn output") prev_gru0 = InputLayer((None, gru0_size), name='prev gru0') self.gru0 = GRUCell(prev_state=prev_gru0, input_or_inputs=self.observed_state) memory_dict = {self.gru0: prev_gru0} #q_eval q_eval = DenseLayer(self.gru0, num_units=controller.n_goals, nonlinearity=lasagne.nonlinearities.linear, name="QEvaluator") #resolver self.resolver = EpsilonGreedyResolver(q_eval, name="resolver") #all together self.agent = Agent(self.observed_state, memory_dict, q_eval, [self.resolver, q_eval]) self.controller = controller self.observation_shape = controller.dnn_output.output_shape self.n_goals = controller.n_goals self.period = controller.metacontroller_period self.applier_fun = self.agent.get_react_function() self.weights = lasagne.layers.get_all_params(self.resolver, trainable=True) def step(self, observation, prev_memories, batch_size): """ returns actions and new states given observation and prev state Prev state in default setup should be [prev window,]""" # default to zeros if prev_memories == 'zeros': prev_memories = [ np.zeros((batch_size, ) + tuple(mem.output_shape[1:]), dtype='float32') for mem in self.agent.agent_states ] res = self.applier_fun(np.array(observation), *prev_memories) action, q_eval = res[:2] memories = res[2:] return action, memories, q_eval.max(axis=-1)
def test_space_invaders( game_title='SpaceInvaders-v0', n_parallel_games=3, replay_seq_len=2, ): """ :param game_title: name of atari game in Gym :param n_parallel_games: how many games we run in parallel :param replay_seq_len: how long is one replay session from a batch """ atari = gym.make(game_title) atari.reset() # Game Parameters n_actions = atari.action_space.n observation_shape = (None, ) + atari.observation_space.shape action_names = atari.get_action_meanings() del atari # ##### Agent observations # image observation at current tick goes here observation_layer = InputLayer(observation_shape, name="images input") # reshape to [batch, color, x, y] to allow for convolutional layers to work correctly observation_reshape = DimshuffleLayer(observation_layer, (0, 3, 1, 2)) # Agent memory states window_size = 3 # prev state input prev_window = InputLayer( (None, window_size) + tuple(observation_reshape.output_shape[1:]), name="previous window state") # our window window = WindowAugmentation(observation_reshape, prev_window, name="new window state") memory_dict = {window: prev_window} # ##### Neural network body # you may use any other lasagne layers, including convolutions, batch_norms, maxout, etc # pixel-wise maximum over the temporal window (to avoid flickering) window_max = ExpressionLayer(window, lambda a: a.max(axis=1), output_shape=(None, ) + window.output_shape[2:]) # a simple lasagne network (try replacing with any other lasagne network and see what works best) nn = DenseLayer(window_max, num_units=50, name='dense0') # Agent policy and action picking q_eval = DenseLayer(nn, num_units=n_actions, nonlinearity=lasagne.nonlinearities.linear, name="QEvaluator") #fakes for a2c policy_eval = DenseLayer(nn, num_units=n_actions, nonlinearity=lasagne.nonlinearities.softmax, name="a2c action probas") state_value_eval = DenseLayer(nn, num_units=1, nonlinearity=None, name="a2c state values") # resolver resolver = ProbabilisticResolver(policy_eval, name="resolver") # agent agent = Agent(observation_layer, memory_dict, (q_eval, policy_eval, state_value_eval), resolver) # Since it's a single lasagne network, one can get it's weights, output, etc weights = lasagne.layers.get_all_params(resolver, trainable=True) # Agent step function print('compiling react') applier_fun = agent.get_react_function() # a nice pythonic interface def step(observation, prev_memories='zeros', batch_size=n_parallel_games): """ returns actions and new states given observation and prev state Prev state in default setup should be [prev window,]""" # default to zeros if prev_memories == 'zeros': prev_memories = [ np.zeros((batch_size, ) + tuple(mem.output_shape[1:]), dtype='float32') for mem in agent.agent_states ] res = applier_fun(np.array(observation), *prev_memories) action = res[0] memories = res[1:] return action, memories # # Create and manage a pool of atari sessions to play with pool = GamePool(game_title, n_parallel_games) observation_log, action_log, reward_log, _, _, _ = pool.interact(step, 50) print(np.array(action_names)[np.array(action_log)[:3, :5]]) # # experience replay pool # Create an environment with all default parameters env = SessionPoolEnvironment(observations=observation_layer, actions=resolver, agent_memories=agent.agent_states) def update_pool(env, pool, n_steps=100): """ a function that creates new sessions and ads them into the pool throwing the old ones away entirely for simplicity""" preceding_memory_states = list(pool.prev_memory_states) # get interaction sessions observation_tensor, action_tensor, reward_tensor, _, is_alive_tensor, _ = pool.interact( step, n_steps=n_steps) # load them into experience replay environment env.load_sessions(observation_tensor, action_tensor, reward_tensor, is_alive_tensor, preceding_memory_states) # load first sessions update_pool(env, pool, replay_seq_len) # A more sophisticated way of training is to store a large pool of sessions and train on random batches of them. # ### Training via experience replay # get agent's Q-values, policy, etc obtained via experience replay _env_states, _observations, _memories, _imagined_actions, estimators = agent.get_sessions( env, session_length=replay_seq_len, batch_size=env.batch_size, optimize_experience_replay=True, ) (q_values_sequence, policy_sequence, value_sequence) = estimators # Evaluating loss function scaled_reward_seq = env.rewards # For SpaceInvaders, however, not scaling rewards is at least working elwise_mse_loss = 0. #1-step algos for algo in qlearning, sarsa: elwise_mse_loss += algo.get_elementwise_objective( q_values_sequence, env.actions[0], scaled_reward_seq, env.is_alive, gamma_or_gammas=0.99, ) #qlearning_n_step for n in (1, 3, replay_seq_len - 1, replay_seq_len, replay_seq_len + 1, None): elwise_mse_loss += qlearning_n_step.get_elementwise_objective( q_values_sequence, env.actions[0], scaled_reward_seq, env.is_alive, gamma_or_gammas=0.99, n_steps=n) #a2c n_step elwise_mse_loss += a2c_n_step.get_elementwise_objective( policy_sequence, value_sequence[:, :, 0], env.actions[0], scaled_reward_seq, env.is_alive, gamma_or_gammas=0.99, n_steps=3) # compute mean over "alive" fragments mse_loss = elwise_mse_loss.sum() / env.is_alive.sum() # regularize network weights reg_l2 = regularize_network_params(resolver, l2) * 10**-4 loss = mse_loss + reg_l2 # Compute weight updates updates = lasagne.updates.adadelta(loss, weights, learning_rate=0.01) # mean session reward mean_session_reward = env.rewards.sum(axis=1).mean() # # Compile train and evaluation functions print('compiling') train_fun = theano.function([], [loss, mean_session_reward], updates=updates) evaluation_fun = theano.function( [], [loss, mse_loss, reg_l2, mean_session_reward]) print("I've compiled!") # # Training loop for epoch_counter in range(10): update_pool(env, pool, replay_seq_len) loss, avg_reward = train_fun() full_loss, q_loss, l2_penalty, avg_reward_current = evaluation_fun() print("epoch %i,loss %.5f, rewards: %.5f " % (epoch_counter, full_loss, avg_reward_current)) print("rec %.3f reg %.3f" % (q_loss, l2_penalty))
def test_memory( game_title='SpaceInvaders-v0', n_parallel_games=3, replay_seq_len=2, ): """ :param game_title: name of atari game in Gym :param n_parallel_games: how many games we run in parallel :param replay_seq_len: how long is one replay session from a batch """ atari = gym.make(game_title) atari.reset() # Game Parameters n_actions = atari.action_space.n observation_shape = (None, ) + atari.observation_space.shape action_names = atari.get_action_meanings() del atari # ##### Agent observations # image observation at current tick goes here observation_layer = InputLayer(observation_shape, name="images input") # reshape to [batch, color, x, y] to allow for convolutional layers to work correctly observation_reshape = DimshuffleLayer(observation_layer, (0, 3, 1, 2)) # Agent memory states memory_dict = OrderedDict([]) ###Window window_size = 3 # prev state input prev_window = InputLayer( (None, window_size) + tuple(observation_reshape.output_shape[1:]), name="previous window state") # our window window = WindowAugmentation(observation_reshape, prev_window, name="new window state") # pixel-wise maximum over the temporal window (to avoid flickering) window_max = ExpressionLayer(window, lambda a: a.max(axis=1), output_shape=(None, ) + window.output_shape[2:]) memory_dict[window] = prev_window ###Stack #prev stack stack_w, stack_h = 4, 5 stack_inputs = DenseLayer(observation_reshape, stack_w, name="prev_stack") stack_controls = DenseLayer(observation_reshape, 3, nonlinearity=lasagne.nonlinearities.softmax, name="prev_stack") prev_stack = InputLayer((None, stack_h, stack_w), name="previous stack state") stack = StackAugmentation(stack_inputs, prev_stack, stack_controls) memory_dict[stack] = prev_stack stack_top = lasagne.layers.SliceLayer(stack, 0, 1) ###RNN preset prev_rnn = InputLayer((None, 16), name="previous RNN state") new_rnn = RNNCell(prev_rnn, observation_reshape) memory_dict[new_rnn] = prev_rnn ###GRU preset prev_gru = InputLayer((None, 16), name="previous GRUcell state") new_gru = GRUCell(prev_gru, observation_reshape) memory_dict[new_gru] = prev_gru ###GRUmemorylayer prev_gru1 = InputLayer((None, 15), name="previous GRUcell state") new_gru1 = GRUMemoryLayer(15, observation_reshape, prev_gru1) memory_dict[new_gru1] = prev_gru1 #LSTM with peepholes prev_lstm0_cell = InputLayer( (None, 13), name="previous LSTMCell hidden state [with peepholes]") prev_lstm0_out = InputLayer( (None, 13), name="previous LSTMCell output state [with peepholes]") new_lstm0_cell, new_lstm0_out = LSTMCell( prev_lstm0_cell, prev_lstm0_out, input_or_inputs=observation_reshape, peepholes=True, name="newLSTM1 [with peepholes]") memory_dict[new_lstm0_cell] = prev_lstm0_cell memory_dict[new_lstm0_out] = prev_lstm0_out #LSTM without peepholes prev_lstm1_cell = InputLayer( (None, 14), name="previous LSTMCell hidden state [no peepholes]") prev_lstm1_out = InputLayer( (None, 14), name="previous LSTMCell output state [no peepholes]") new_lstm1_cell, new_lstm1_out = LSTMCell( prev_lstm1_cell, prev_lstm1_out, input_or_inputs=observation_reshape, peepholes=False, name="newLSTM1 [no peepholes]") memory_dict[new_lstm1_cell] = prev_lstm1_cell memory_dict[new_lstm1_out] = prev_lstm1_out ##concat everything for i in [flatten(window_max), stack_top, new_rnn, new_gru, new_gru1]: print(i.output_shape) all_memory = concat([ flatten(window_max), stack_top, new_rnn, new_gru, new_gru1, new_lstm0_out, new_lstm1_out, ]) # ##### Neural network body # you may use any other lasagne layers, including convolutions, batch_norms, maxout, etc # a simple lasagne network (try replacing with any other lasagne network and see what works best) nn = DenseLayer(all_memory, num_units=50, name='dense0') # Agent policy and action picking q_eval = DenseLayer(nn, num_units=n_actions, nonlinearity=lasagne.nonlinearities.linear, name="QEvaluator") # resolver resolver = EpsilonGreedyResolver(q_eval, epsilon=0.1, name="resolver") # agent agent = Agent(observation_layer, memory_dict, q_eval, resolver) # Since it's a single lasagne network, one can get it's weights, output, etc weights = lasagne.layers.get_all_params(resolver, trainable=True) # Agent step function print('compiling react') applier_fun = agent.get_react_function() # a nice pythonic interface def step(observation, prev_memories='zeros', batch_size=n_parallel_games): """ returns actions and new states given observation and prev state Prev state in default setup should be [prev window,]""" # default to zeros if prev_memories == 'zeros': prev_memories = [ np.zeros((batch_size, ) + tuple(mem.output_shape[1:]), dtype='float32') for mem in agent.agent_states ] res = applier_fun(np.array(observation), *prev_memories) action = res[0] memories = res[1:] return action, memories # # Create and manage a pool of atari sessions to play with pool = GamePool(game_title, n_parallel_games) observation_log, action_log, reward_log, _, _, _ = pool.interact(step, 50) print(np.array(action_names)[np.array(action_log)[:3, :5]]) # # experience replay pool # Create an environment with all default parameters env = SessionPoolEnvironment(observations=observation_layer, actions=resolver, agent_memories=agent.agent_states) def update_pool(env, pool, n_steps=100): """ a function that creates new sessions and ads them into the pool throwing the old ones away entirely for simplicity""" preceding_memory_states = list(pool.prev_memory_states) # get interaction sessions observation_tensor, action_tensor, reward_tensor, _, is_alive_tensor, _ = pool.interact( step, n_steps=n_steps) # load them into experience replay environment env.load_sessions(observation_tensor, action_tensor, reward_tensor, is_alive_tensor, preceding_memory_states) # load first sessions update_pool(env, pool, replay_seq_len) # A more sophisticated way of training is to store a large pool of sessions and train on random batches of them. # ### Training via experience replay # get agent's Q-values obtained via experience replay _env_states, _observations, _memories, _imagined_actions, q_values_sequence = agent.get_sessions( env, session_length=replay_seq_len, batch_size=env.batch_size, optimize_experience_replay=True, ) # Evaluating loss function scaled_reward_seq = env.rewards # For SpaceInvaders, however, not scaling rewards is at least working elwise_mse_loss = qlearning.get_elementwise_objective( q_values_sequence, env.actions[0], scaled_reward_seq, env.is_alive, gamma_or_gammas=0.99, ) # compute mean over "alive" fragments mse_loss = elwise_mse_loss.sum() / env.is_alive.sum() # regularize network weights reg_l2 = regularize_network_params(resolver, l2) * 10**-4 loss = mse_loss + reg_l2 # Compute weight updates updates = lasagne.updates.adadelta(loss, weights, learning_rate=0.01) # mean session reward mean_session_reward = env.rewards.sum(axis=1).mean() # # Compile train and evaluation functions print('compiling') train_fun = theano.function([], [loss, mean_session_reward], updates=updates) evaluation_fun = theano.function( [], [loss, mse_loss, reg_l2, mean_session_reward]) print("I've compiled!") # # Training loop for epoch_counter in range(10): update_pool(env, pool, replay_seq_len) loss, avg_reward = train_fun() full_loss, q_loss, l2_penalty, avg_reward_current = evaluation_fun() print("epoch %i,loss %.5f, rewards: %.5f " % (epoch_counter, full_loss, avg_reward_current)) print("rec %.3f reg %.3f" % (q_loss, l2_penalty))
class Controller: def __init__(self, observation_shape, n_actions, n_goals=32, metacontroller_period=5, window_size=3, embedding_size=128, ): #image observation at current tick goes here self.observation_layer = InputLayer(observation_shape, name="images input") #reshape to [batch, color, x, y] to allow for convolutional layers to work correctly observation_reshape = DimshuffleLayer(self.observation_layer,(0,3,1,2)) observation_reshape = lasagne.layers.Pool2DLayer(observation_reshape,(2,2),mode='average_inc_pad') #prev state input prev_window = InputLayer((None,window_size)+tuple(observation_reshape.output_shape[1:]), name = "previous window state") #our window window = WindowAugmentation(observation_reshape, prev_window, name = "new window state") # pixel-wise maximum over the temporal window (to avoid flickering) window_max = ExpressionLayer(window, lambda a: a.max(axis=1), output_shape=(None,) + window.output_shape[2:]) memory_dict = {window: prev_window} #a simple lasagne network (try replacing with any other lasagne network and see what works best) nn = batch_norm(Conv2DLayer(window_max,16,filter_size=8,stride=(4,4), name='cnn0')) nn = batch_norm(Conv2DLayer(nn,32,filter_size=4,stride=(2,2), name='cnn1')) nn = batch_norm(Conv2DLayer(nn,64,filter_size=4,stride=(2,2), name='cnn2')) #nn = DropoutLayer(nn,name = "dropout", p=0.05) #will get deterministic during evaluation self.dnn_output = nn = DenseLayer(nn,num_units=256,name='dense1') self.goal_layer = InputLayer((None,), T.ivector(), name='boss goal') self.goal_layer.output_dtype = 'int32' goal_emb = EmbeddingLayer(self.goal_layer, n_goals, embedding_size) nn = lasagne.layers.ConcatLayer([goal_emb,nn]) #q_eval q_eval = DenseLayer(nn, num_units = n_actions, nonlinearity=lasagne.nonlinearities.linear, name="QEvaluator") #resolver self.resolver = EpsilonGreedyResolver(q_eval,name="resolver") #all together self.agent = Agent([self.observation_layer,self.goal_layer], memory_dict, q_eval, [self.resolver,self.dnn_output]) self.observation_shape = observation_shape self.n_actions = n_actions self.n_goals = n_goals self.metacontroller_period = metacontroller_period self.window_size = window_size self.embedding_size = embedding_size self.applier_fun = self.agent.get_react_function() self.weights = lasagne.layers.get_all_params(self.resolver,trainable=True) def step(self,observation,goal,prev_memories, batch_size): """ returns actions and new states given observation and prev state Prev state in default setup should be [prev window,]""" # default to zeros if prev_memories == 'zeros': prev_memories = [np.zeros((batch_size,) + tuple(mem.output_shape[1:]), dtype='float32') for mem in self.agent.agent_states] res = self.applier_fun(np.array(observation), np.array(goal), *prev_memories) action,metacontroller_inp = res[:2] memories = res[2:] return action, memories, metacontroller_inp
def test_space_invaders(game_title='SpaceInvaders-v0', n_parallel_games=3, replay_seq_len=2, ): """ :param game_title: name of atari game in Gym :param n_parallel_games: how many games we run in parallel :param replay_seq_len: how long is one replay session from a batch """ atari = gym.make(game_title) atari.reset() # Game Parameters n_actions = atari.action_space.n observation_shape = (None,) + atari.observation_space.shape action_names = atari.get_action_meanings() del atari # ##### Agent observations # image observation at current tick goes here observation_layer = InputLayer(observation_shape, name="images input") # reshape to [batch, color, x, y] to allow for convolutional layers to work correctly observation_reshape = DimshuffleLayer(observation_layer, (0, 3, 1, 2)) # Agent memory states window_size = 3 # prev state input prev_window = InputLayer((None, window_size) + tuple(observation_reshape.output_shape[1:]), name="previous window state") # our window window = WindowAugmentation(observation_reshape, prev_window, name="new window state") memory_dict = {window: prev_window} # ##### Neural network body # you may use any other lasagne layers, including convolutions, batch_norms, maxout, etc # pixel-wise maximum over the temporal window (to avoid flickering) window_max = ExpressionLayer(window, lambda a: a.max(axis=1), output_shape=(None,) + window.output_shape[2:]) # a simple lasagne network (try replacing with any other lasagne network and see what works best) nn = DenseLayer(window_max, num_units=50, name='dense0') # Agent policy and action picking q_eval = DenseLayer(nn, num_units=n_actions, nonlinearity=lasagne.nonlinearities.linear, name="QEvaluator") #fakes for a2c policy_eval = DenseLayer(nn, num_units=n_actions, nonlinearity=lasagne.nonlinearities.softmax, name="a2c action probas") state_value_eval = DenseLayer(nn, num_units=1, nonlinearity=None, name="a2c state values") # resolver resolver = ProbabilisticResolver(policy_eval, name="resolver") # agent agent = Agent(observation_layer, memory_dict, (q_eval,policy_eval,state_value_eval), resolver) # Since it's a single lasagne network, one can get it's weights, output, etc weights = lasagne.layers.get_all_params(resolver, trainable=True) # Agent step function print('compiling react') applier_fun = agent.get_react_function() # a nice pythonic interface def step(observation, prev_memories='zeros', batch_size=n_parallel_games): """ returns actions and new states given observation and prev state Prev state in default setup should be [prev window,]""" # default to zeros if prev_memories == 'zeros': prev_memories = [np.zeros((batch_size,) + tuple(mem.output_shape[1:]), dtype='float32') for mem in agent.agent_states] res = applier_fun(np.array(observation), *prev_memories) action = res[0] memories = res[1:] return action, memories # # Create and manage a pool of atari sessions to play with pool = GamePool(game_title, n_parallel_games) observation_log, action_log, reward_log, _, _, _ = pool.interact(step, 50) print(np.array(action_names)[np.array(action_log)[:3, :5]]) # # experience replay pool # Create an environment with all default parameters env = SessionPoolEnvironment(observations=observation_layer, actions=resolver, agent_memories=agent.agent_states) def update_pool(env, pool, n_steps=100): """ a function that creates new sessions and ads them into the pool throwing the old ones away entirely for simplicity""" preceding_memory_states = list(pool.prev_memory_states) # get interaction sessions observation_tensor, action_tensor, reward_tensor, _, is_alive_tensor, _ = pool.interact(step, n_steps=n_steps) # load them into experience replay environment env.load_sessions(observation_tensor, action_tensor, reward_tensor, is_alive_tensor, preceding_memory_states) # load first sessions update_pool(env, pool, replay_seq_len) # A more sophisticated way of training is to store a large pool of sessions and train on random batches of them. # ### Training via experience replay # get agent's Q-values, policy, etc obtained via experience replay _env_states, _observations, _memories, _imagined_actions, estimators = agent.get_sessions( env, session_length=replay_seq_len, batch_size=env.batch_size, optimize_experience_replay=True, ) (q_values_sequence,policy_sequence,value_sequence) = estimators # Evaluating loss function scaled_reward_seq = env.rewards # For SpaceInvaders, however, not scaling rewards is at least working elwise_mse_loss = 0. #1-step algos for algo in qlearning,sarsa: elwise_mse_loss += algo.get_elementwise_objective(q_values_sequence, env.actions[0], scaled_reward_seq, env.is_alive, gamma_or_gammas=0.99, ) #qlearning_n_step for n in (1,3,replay_seq_len-1, replay_seq_len, replay_seq_len+1,None): elwise_mse_loss += qlearning_n_step.get_elementwise_objective(q_values_sequence, env.actions[0], scaled_reward_seq, env.is_alive, gamma_or_gammas=0.99, n_steps=n) #a2c n_step elwise_mse_loss += a2c_n_step.get_elementwise_objective(policy_sequence, value_sequence[:,:,0], env.actions[0], scaled_reward_seq, env.is_alive, gamma_or_gammas=0.99, n_steps=3) # compute mean over "alive" fragments mse_loss = elwise_mse_loss.sum() / env.is_alive.sum() # regularize network weights reg_l2 = regularize_network_params(resolver, l2) * 10 ** -4 loss = mse_loss + reg_l2 # Compute weight updates updates = lasagne.updates.adadelta(loss, weights, learning_rate=0.01) # mean session reward mean_session_reward = env.rewards.sum(axis=1).mean() # # Compile train and evaluation functions print('compiling') train_fun = theano.function([], [loss, mean_session_reward], updates=updates) evaluation_fun = theano.function([], [loss, mse_loss, reg_l2, mean_session_reward]) print("I've compiled!") # # Training loop for epoch_counter in range(10): update_pool(env, pool, replay_seq_len) loss, avg_reward = train_fun() full_loss, q_loss, l2_penalty, avg_reward_current = evaluation_fun() print("epoch %i,loss %.5f, rewards: %.5f " % ( epoch_counter, full_loss, avg_reward_current)) print("rec %.3f reg %.3f" % (q_loss, l2_penalty))
def test_memory(game_title='SpaceInvaders-v0', n_parallel_games=3, replay_seq_len=2, ): """ :param game_title: name of atari game in Gym :param n_parallel_games: how many games we run in parallel :param replay_seq_len: how long is one replay session from a batch """ atari = gym.make(game_title) atari.reset() # Game Parameters n_actions = atari.action_space.n observation_shape = (None,) + atari.observation_space.shape action_names = atari.get_action_meanings() del atari # ##### Agent observations # image observation at current tick goes here observation_layer = InputLayer(observation_shape, name="images input") # reshape to [batch, color, x, y] to allow for convolutional layers to work correctly observation_reshape = DimshuffleLayer(observation_layer, (0, 3, 1, 2)) # Agent memory states memory_dict = OrderedDict([]) ###Window window_size = 3 # prev state input prev_window = InputLayer((None, window_size) + tuple(observation_reshape.output_shape[1:]), name="previous window state") # our window window = WindowAugmentation(observation_reshape, prev_window, name="new window state") # pixel-wise maximum over the temporal window (to avoid flickering) window_max = ExpressionLayer(window, lambda a: a.max(axis=1), output_shape=(None,) + window.output_shape[2:]) memory_dict[window] = prev_window ###Stack #prev stack stack_w,stack_h = 4, 5 stack_inputs = DenseLayer(observation_reshape,stack_w,name="prev_stack") stack_controls = DenseLayer(observation_reshape,3, nonlinearity=lasagne.nonlinearities.softmax, name="prev_stack") prev_stack = InputLayer((None,stack_h,stack_w), name="previous stack state") stack = StackAugmentation(stack_inputs,prev_stack, stack_controls) memory_dict[stack] = prev_stack stack_top = lasagne.layers.SliceLayer(stack,0,1) ###RNN preset prev_rnn = InputLayer((None,16), name="previous RNN state") new_rnn = RNNCell(prev_rnn,observation_reshape) memory_dict[new_rnn] = prev_rnn ###GRU preset prev_gru = InputLayer((None,16), name="previous GRUcell state") new_gru = GRUCell(prev_gru,observation_reshape) memory_dict[new_gru] = prev_gru ###GRUmemorylayer prev_gru1 = InputLayer((None,15), name="previous GRUcell state") new_gru1 = GRUMemoryLayer(15,observation_reshape,prev_gru1) memory_dict[new_gru1] = prev_gru1 #LSTM with peepholes prev_lstm0_cell = InputLayer((None,13), name="previous LSTMCell hidden state [with peepholes]") prev_lstm0_out = InputLayer((None,13), name="previous LSTMCell output state [with peepholes]") new_lstm0_cell,new_lstm0_out = LSTMCell(prev_lstm0_cell,prev_lstm0_out, input_or_inputs = observation_reshape, peepholes=True,name="newLSTM1 [with peepholes]") memory_dict[new_lstm0_cell] = prev_lstm0_cell memory_dict[new_lstm0_out] = prev_lstm0_out #LSTM without peepholes prev_lstm1_cell = InputLayer((None,14), name="previous LSTMCell hidden state [no peepholes]") prev_lstm1_out = InputLayer((None,14), name="previous LSTMCell output state [no peepholes]") new_lstm1_cell,new_lstm1_out = LSTMCell(prev_lstm1_cell,prev_lstm1_out, input_or_inputs = observation_reshape, peepholes=False,name="newLSTM1 [no peepholes]") memory_dict[new_lstm1_cell] = prev_lstm1_cell memory_dict[new_lstm1_out] = prev_lstm1_out ##concat everything for i in [flatten(window_max),stack_top,new_rnn,new_gru,new_gru1]: print(i.output_shape) all_memory = concat([flatten(window_max),stack_top,new_rnn,new_gru,new_gru1,new_lstm0_out,new_lstm1_out,]) # ##### Neural network body # you may use any other lasagne layers, including convolutions, batch_norms, maxout, etc # a simple lasagne network (try replacing with any other lasagne network and see what works best) nn = DenseLayer(all_memory, num_units=50, name='dense0') # Agent policy and action picking q_eval = DenseLayer(nn, num_units=n_actions, nonlinearity=lasagne.nonlinearities.linear, name="QEvaluator") # resolver resolver = EpsilonGreedyResolver(q_eval, epsilon=0.1, name="resolver") # agent agent = Agent(observation_layer, memory_dict, q_eval, resolver) # Since it's a single lasagne network, one can get it's weights, output, etc weights = lasagne.layers.get_all_params(resolver, trainable=True) # Agent step function print('compiling react') applier_fun = agent.get_react_function() # a nice pythonic interface def step(observation, prev_memories='zeros', batch_size=n_parallel_games): """ returns actions and new states given observation and prev state Prev state in default setup should be [prev window,]""" # default to zeros if prev_memories == 'zeros': prev_memories = [np.zeros((batch_size,) + tuple(mem.output_shape[1:]), dtype='float32') for mem in agent.agent_states] res = applier_fun(np.array(observation), *prev_memories) action = res[0] memories = res[1:] return action, memories # # Create and manage a pool of atari sessions to play with pool = GamePool(game_title, n_parallel_games) observation_log, action_log, reward_log, _, _, _ = pool.interact(step, 50) print(np.array(action_names)[np.array(action_log)[:3, :5]]) # # experience replay pool # Create an environment with all default parameters env = SessionPoolEnvironment(observations=observation_layer, actions=resolver, agent_memories=agent.agent_states) def update_pool(env, pool, n_steps=100): """ a function that creates new sessions and ads them into the pool throwing the old ones away entirely for simplicity""" preceding_memory_states = list(pool.prev_memory_states) # get interaction sessions observation_tensor, action_tensor, reward_tensor, _, is_alive_tensor, _ = pool.interact(step, n_steps=n_steps) # load them into experience replay environment env.load_sessions(observation_tensor, action_tensor, reward_tensor, is_alive_tensor, preceding_memory_states) # load first sessions update_pool(env, pool, replay_seq_len) # A more sophisticated way of training is to store a large pool of sessions and train on random batches of them. # ### Training via experience replay # get agent's Q-values obtained via experience replay _env_states, _observations, _memories, _imagined_actions, q_values_sequence = agent.get_sessions( env, session_length=replay_seq_len, batch_size=env.batch_size, optimize_experience_replay=True, ) # Evaluating loss function scaled_reward_seq = env.rewards # For SpaceInvaders, however, not scaling rewards is at least working elwise_mse_loss = qlearning.get_elementwise_objective(q_values_sequence, env.actions[0], scaled_reward_seq, env.is_alive, gamma_or_gammas=0.99, ) # compute mean over "alive" fragments mse_loss = elwise_mse_loss.sum() / env.is_alive.sum() # regularize network weights reg_l2 = regularize_network_params(resolver, l2) * 10 ** -4 loss = mse_loss + reg_l2 # Compute weight updates updates = lasagne.updates.adadelta(loss, weights, learning_rate=0.01) # mean session reward mean_session_reward = env.rewards.sum(axis=1).mean() # # Compile train and evaluation functions print('compiling') train_fun = theano.function([], [loss, mean_session_reward], updates=updates) evaluation_fun = theano.function([], [loss, mse_loss, reg_l2, mean_session_reward]) print("I've compiled!") # # Training loop for epoch_counter in range(10): update_pool(env, pool, replay_seq_len) loss, avg_reward = train_fun() full_loss, q_loss, l2_penalty, avg_reward_current = evaluation_fun() print("epoch %i,loss %.5f, rewards: %.5f " % ( epoch_counter, full_loss, avg_reward_current)) print("rec %.3f reg %.3f" % (q_loss, l2_penalty))
class Controller: def __init__( self, observation_shape, n_actions, n_goals=32, metacontroller_period=5, window_size=3, embedding_size=128, ): #image observation at current tick goes here self.observation_layer = InputLayer(observation_shape, name="images input") #reshape to [batch, color, x, y] to allow for convolutional layers to work correctly observation_reshape = DimshuffleLayer(self.observation_layer, (0, 3, 1, 2)) observation_reshape = lasagne.layers.Pool2DLayer( observation_reshape, (2, 2), mode='average_inc_pad') #prev state input prev_window = InputLayer( (None, window_size) + tuple(observation_reshape.output_shape[1:]), name="previous window state") #our window window = WindowAugmentation(observation_reshape, prev_window, name="new window state") # pixel-wise maximum over the temporal window (to avoid flickering) window_max = ExpressionLayer(window, lambda a: a.max(axis=1), output_shape=(None, ) + window.output_shape[2:]) memory_dict = {window: prev_window} #a simple lasagne network (try replacing with any other lasagne network and see what works best) nn = batch_norm( Conv2DLayer(window_max, 16, filter_size=8, stride=(4, 4), name='cnn0')) nn = batch_norm( Conv2DLayer(nn, 32, filter_size=4, stride=(2, 2), name='cnn1')) nn = batch_norm( Conv2DLayer(nn, 64, filter_size=4, stride=(2, 2), name='cnn2')) #nn = DropoutLayer(nn,name = "dropout", p=0.05) #will get deterministic during evaluation self.dnn_output = nn = DenseLayer(nn, num_units=256, name='dense1') self.goal_layer = InputLayer((None, ), T.ivector(), name='boss goal') self.goal_layer.output_dtype = 'int32' goal_emb = EmbeddingLayer(self.goal_layer, n_goals, embedding_size) nn = lasagne.layers.ConcatLayer([goal_emb, nn]) #q_eval q_eval = DenseLayer(nn, num_units=n_actions, nonlinearity=lasagne.nonlinearities.linear, name="QEvaluator") #resolver self.resolver = EpsilonGreedyResolver(q_eval, name="resolver") #all together self.agent = Agent([self.observation_layer, self.goal_layer], memory_dict, q_eval, [self.resolver, self.dnn_output]) self.observation_shape = observation_shape self.n_actions = n_actions self.n_goals = n_goals self.metacontroller_period = metacontroller_period self.window_size = window_size self.embedding_size = embedding_size self.applier_fun = self.agent.get_react_function() self.weights = lasagne.layers.get_all_params(self.resolver, trainable=True) def step(self, observation, goal, prev_memories, batch_size): """ returns actions and new states given observation and prev state Prev state in default setup should be [prev window,]""" # default to zeros if prev_memories == 'zeros': prev_memories = [ np.zeros((batch_size, ) + tuple(mem.output_shape[1:]), dtype='float32') for mem in self.agent.agent_states ] res = self.applier_fun(np.array(observation), np.array(goal), *prev_memories) action, metacontroller_inp = res[:2] memories = res[2:] return action, memories, metacontroller_inp