class DDPG(): """Reinforcement Learning agent that learns using DDPG.""" def __init__(self, task): self.task = task self.state_size = task.state_size self.action_size = task.action_size self.action_low = task.action_low self.action_high = task.action_high # Actor (Policy) Model self.actor_local = Actor(self.state_size, self.action_size, self.action_low, self.action_high) self.actor_target = Actor(self.state_size, self.action_size, self.action_low, self.action_high) # Critic (Value) Model self.critic_local = Critic(self.state_size, self.action_size) self.critic_target = Critic(self.state_size, self.action_size) # Initialize target model parameters with local model parameters self.critic_target.model.set_weights( self.critic_local.model.get_weights()) self.actor_target.model.set_weights( self.actor_local.model.get_weights()) # Noise process self.exploration_mu = 0 self.exploration_theta = 0.15 self.exploration_sigma = 0.3 self.noise = OUNoise(self.action_size, self.exploration_mu, self.exploration_theta, self.exploration_sigma) # Replay memory self.buffer_size = 1000000 self.batch_size = 64 self.memory = ReplayBuffer(self.buffer_size, self.batch_size) # Algorithm parameters self.gamma = 0.95 # discount factor self.tau = 0.002 # for soft update of target parameters def reset_episode(self): self.noise.reset() state = self.task.reset() self.last_state = state return state def step(self, action, reward, next_state, done): # Save experience / reward self.memory.add(self.last_state, action, reward, next_state, done) # Learn, if enough samples are available in memory if len(self.memory) > self.batch_size: experiences = self.memory.sample() self.learn(experiences) # Roll over last state and action self.last_state = next_state def act(self, states): state = np.reshape(states, [-1, self.state_size]) action = self.actor_local.model.predict(state)[0] return list(action + self.noise.sample()) # add some noise for exploration def learn(self, experiences): states = np.vstack([e.state for e in experiences if e is not None]) actions = np.array([e.action for e in experiences if e is not None]).astype(np.float32).reshape( -1, self.action_size) rewards = np.array([e.reward for e in experiences if e is not None ]).astype(np.float32).reshape(-1, 1) dones = np.array([e.done for e in experiences if e is not None]).astype(np.uint8).reshape(-1, 1) next_states = np.vstack( [e.next_state for e in experiences if e is not None]) actions_next = self.actor_target.model.predict_on_batch(next_states) Q_targets_next = self.critic_target.model.predict_on_batch( [next_states, actions_next]) Q_targets = rewards + self.gamma * Q_targets_next * (1 - dones) self.critic_local.model.train_on_batch(x=[states, actions], y=Q_targets) action_gradients = np.reshape( self.critic_local.get_action_gradients([states, actions, 0]), (-1, self.action_size)) self.actor_local.train_fn([states, action_gradients, 1]) # custom training function self.soft_update(self.critic_local.model, self.critic_target.model) self.soft_update(self.actor_local.model, self.actor_target.model) def soft_update(self, local_model, target_model): """Soft update model parameters.""" local_weights = np.array(local_model.get_weights()) target_weights = np.array(target_model.get_weights()) new_weights = self.tau * local_weights + (1 - self.tau) * target_weights target_model.set_weights(new_weights)
class DDPG(): """Reinforcement Learning agent that learns using DDPG.""" def __init__(self, task, expl_mu, expl_th, expl_sigma, gamma, tau, batch=64): self.task = task self.state_size = task.state_size self.action_size = task.action_size self.action_low = task.action_low self.action_high = task.action_high # Actor (Policy) Model self.actor_local = Actor(self.state_size, self.action_size, self.action_low, self.action_high) self.actor_target = Actor(self.state_size, self.action_size, self.action_low, self.action_high) # Critic (Value) Model self.critic_local = Critic(self.state_size, self.action_size) self.critic_target = Critic(self.state_size, self.action_size) # Initialize target model parameters with local model parameters self.critic_target.model.set_weights( self.critic_local.model.get_weights()) self.actor_target.model.set_weights( self.actor_local.model.get_weights()) # Noise process self.exploration_mu = expl_mu self.exploration_theta = expl_th self.exploration_sigma = expl_sigma self.noise = OUNoise(self.action_size, self.exploration_mu, self.exploration_theta, self.exploration_sigma) # Replay memory self.buffer_size = 200000 self.batch_size = batch self.memory = ReplayBuffer(self.buffer_size, self.batch_size) # Algorithm parameters self.gamma = gamma # discount factor self.tau = tau # for soft update of target parameters def reset_episode(self): self.noise.reset() state = self.task.reset() self.last_state = state return state def step(self, action, reward, next_state, done, save): # Save experience / reward self.memory.add(self.last_state, action, reward, next_state, done) # Learn, if enough samples are available in memory if len(self.memory) > self.batch_size: experiences = self.memory.sample() self.learn(experiences, save) # Roll over last state and action self.last_state = next_state def act(self, state, learn): """Returns actions for given state(s) as per current policy.""" if learn == False: # min_noise = 1e-12 self.actor_local.model.load_weights('qd_weights.h5') state = np.reshape(state, [-1, self.state_size]) action = self.actor_local.model.predict(state)[0] # return list(action + [min_noise]*4) return list(action) else: state = np.reshape(state, [-1, self.state_size]) action = self.actor_local.model.predict(state)[0] return list(action + self.noise.sample()) # add some noise for exploration def learn(self, experiences, save): """Update policy and value parameters using given batch of experience tuples.""" # Convert experience tuples to separate arrays for each element (states, actions, rewards, etc.) states = np.vstack([e.state for e in experiences if e is not None]) actions = np.array([e.action for e in experiences if e is not None]).astype(np.float32).reshape( -1, self.action_size) rewards = np.array([e.reward for e in experiences if e is not None ]).astype(np.float32).reshape(-1, 1) dones = np.array([e.done for e in experiences if e is not None]).astype(np.uint8).reshape(-1, 1) next_states = np.vstack( [e.next_state for e in experiences if e is not None]) # Get predicted next-state actions and Q values from target models # Q_targets_next = critic_target(next_state, actor_target(next_state)) actions_next = self.actor_target.model.predict_on_batch(next_states) Q_targets_next = self.critic_target.model.predict_on_batch( [next_states, actions_next]) # Compute Q targets for current states and train critic model (local) Q_targets = rewards + self.gamma * Q_targets_next * (1 - dones) self.critic_local.model.train_on_batch(x=[states, actions], y=Q_targets) # Train actor model (local) action_gradients = np.reshape( self.critic_local.get_action_gradients([states, actions, 0]), (-1, self.action_size)) self.actor_local.train_fn([states, action_gradients, 1]) # custom training function # Soft-update target models self.soft_update(self.critic_local.model, self.critic_target.model) self.soft_update(self.actor_local.model, self.actor_target.model, save) def soft_update(self, local_model, target_model, save=False): """Soft update model parameters.""" local_weights = np.array(local_model.get_weights()) target_weights = np.array(target_model.get_weights()) assert len(local_weights) == len( target_weights ), "Local and target model parameters must have the same size" new_weights = self.tau * local_weights + (1 - self.tau) * target_weights target_model.set_weights(new_weights) if save: local_model.save_weights('qd_weights.h5')
class DDPG(): """Reinforcement Learning agent that learns using DDPG.""" def __init__(self, task): self.task = task self.state_size = task.state_size self.action_size = task.action_size self.action_low = task.action_low self.action_high = task.action_high # Actor (Policy) Model self.actor_local = Actor(self.state_size, self.action_size, self.action_low, self.action_high) self.actor_target = Actor(self.state_size, self.action_size, self.action_low, self.action_high) # Critic (Value) Model self.critic_local = Critic(self.state_size, self.action_size) self.critic_target = Critic(self.state_size, self.action_size) # Initialize target model parameters with local model parameters self.critic_target.model.set_weights( self.critic_local.model.get_weights()) self.actor_target.model.set_weights( self.actor_local.model.get_weights()) # Noise process self.exploration_mu = 0 self.exploration_theta = 0.10 self.exploration_sigma = 0.15 self.noise = OUNoise(self.action_size, self.exploration_mu, self.exploration_theta, self.exploration_sigma) # Replay memory self.buffer_size = 100000 self.batch_size = 64 self.memory = ReplayBuffer(self.buffer_size, self.batch_size) # Algorithm parameters self.gamma = 0.99 # discount factor self.tau = 0.01 # for soft update of target parameters # score tracker self.best_score = -np.inf self.achievement = False # Episode variables self.reset_episode() def reset_episode(self): self.count = 0 self.noise.reset() self.achievement = False self.total_reward = [0.0, 0.0, 0.0] state = self.task.reset() self.last_state = state return state def step(self, action, reward, next_state, done, achievement): self.count += 1 self.total_reward = self.total_reward[:-1] self.total_reward = np.concatenate([[int(reward)], self.total_reward]) # Save experience / reward self.memory.add(self.last_state, action, reward, next_state, done) # Learn, if enough samples are available in memory if len(self.memory) > self.batch_size: experiences = self.memory.sample() self.learn(experiences) # Roll over last state and action self.last_state = next_state self.score = np.mean(self.total_reward) self.achievement = achievement if self.score > self.best_score: self.best_score = self.score # print(self.total_reward, np.mean(self.total_reward), np.round(self.last_state[1:4], 2)) def act(self, state): """Returns actions for given state(s) as per current policy.""" state = np.reshape(state, [-1, self.state_size]) action = self.actor_local.model.predict(state)[0] return list(action + self.noise.sample()) # add some noise for exploration def learn(self, experiences): """Update policy and value parameters using given batch of experience tuples.""" # Convert experience tuples to separate arrays for each element (states, actions, rewards, etc.) states = np.vstack([e.state for e in experiences if e is not None]) actions = np.array([e.action for e in experiences if e is not None]).astype(np.float32).reshape( -1, self.action_size) rewards = np.array([e.reward for e in experiences if e is not None ]).astype(np.float32).reshape(-1, 1) dones = np.array([e.done for e in experiences if e is not None]).astype(np.uint8).reshape(-1, 1) next_states = np.vstack( [e.next_state for e in experiences if e is not None]) # Get predicted next-state actions and Q values from target models # Q_targets_next = critic_target(next_state, actor_target(next_state)) actions_next = self.actor_target.model.predict_on_batch(next_states) Q_targets_next = self.critic_target.model.predict_on_batch( [next_states, actions_next]) # Compute Q targets for current states and train critic model (local) Q_targets = rewards + self.gamma * Q_targets_next * (1 - dones) self.critic_local.model.train_on_batch(x=[states, actions], y=Q_targets) # Train actor model (local) action_gradients = np.reshape( self.critic_local.get_action_gradients([states, actions, 0]), (-1, self.action_size)) self.actor_local.train_fn([states, action_gradients, 1]) # custom training function # Soft-update target models self.soft_update(self.critic_local.model, self.critic_target.model) self.soft_update(self.actor_local.model, self.actor_target.model) def soft_update(self, local_model, target_model): """Soft update model parameters.""" local_weights = np.array(local_model.get_weights()) target_weights = np.array(target_model.get_weights()) assert len(local_weights) == len( target_weights ), "Local and target model parameters must have the same size" new_weights = self.tau * local_weights + (1 - self.tau) * target_weights target_model.set_weights(new_weights)