def _network(self, observ, length=None, state=None, reuse=True): """Compute the network output for a batched sequence of observations. Optionally, the initial state can be specified. The weights should be reused for all calls, except for the first one. Output is a named tuple containing the policy as a TensorFlow distribution, the policy mean and log standard deviation, the approximated state value, and the new recurrent state. Args: observ: Sequences of observations. length: Batch of sequence lengths. state: Batch of initial recurrent states. reuse: Python boolean whether to reuse previous variables. Returns: NetworkOutput tuple. """ with tf.variable_scope('network', reuse=reuse): observ = tf.convert_to_tensor(observ) use_gpu = self._config.use_gpu and utility.available_gpus() with tf.device('/gpu:0' if use_gpu else '/cpu:0'): observ = tf.check_numerics(observ, 'observ') cell = self._config.network(self._batch_env.action.shape[1].value) (mean, logstd, value), state = tf.nn.dynamic_rnn( cell, observ, length, state, tf.float32, swap_memory=True) mean = tf.check_numerics(mean, 'mean') logstd = tf.check_numerics(logstd, 'logstd') value = tf.check_numerics(value, 'value') policy = tf.contrib.distributions.MultivariateNormalDiag( mean, tf.exp(logstd)) return _NetworkOutput(policy, mean, logstd, value, state)
def _training(self): """Perform multiple training iterations of both policy and value baseline. Training on the episodes collected in the memory. Reset the memory afterwards. Always returns a summary string. Returns: Summary tensor. """ use_gpu = self._config.use_gpu and utility.available_gpus() with tf.device('/gpu:0' if use_gpu else '/cpu:0'): with tf.name_scope('training'): assert_full = tf.assert_equal(self._memory_index, self._config.update_every) with tf.control_dependencies([assert_full]): data = self._memory.data() (observ, action, old_mean, old_logstd, reward), length = data with tf.control_dependencies([tf.assert_greater(length, 0)]): length = tf.identity(length) observ = self._observ_filter.transform(observ) reward = self._reward_filter.transform(reward) update_summary = self._perform_update_steps( observ, action, old_mean, old_logstd, reward, length) with tf.control_dependencies([update_summary]): penalty_summary = self._adjust_penalty( observ, old_mean, old_logstd, length) with tf.control_dependencies([penalty_summary]): clear_memory = tf.group(self._memory.clear(), self._memory_index.assign(0)) with tf.control_dependencies([clear_memory]): weight_summary = utility.variable_summaries( tf.trainable_variables(), self._config.weight_summaries) return tf.summary.merge( [update_summary, penalty_summary, weight_summary])
def __init__(self, batch_env, step, is_training, should_log, config): """Create an instance of the PPO algorithm. Args: batch_env: In-graph batch environment. step: Integer tensor holding the current training step. is_training: Boolean tensor for whether the algorithm should train. should_log: Boolean tensor for whether summaries should be returned. config: Object containing the agent configuration as attributes. """ self._batch_env = batch_env self._step = step self._is_training = is_training self._should_log = should_log self._config = config self._observ_filter = normalize.StreamingNormalize( self._batch_env.observ[0], center=True, scale=True, clip=5, name='normalize_observ') self._reward_filter = normalize.StreamingNormalize( self._batch_env.reward[0], center=False, scale=True, clip=10, name='normalize_reward') # Memory stores tuple of observ, action, mean, logstd, reward. template = ( self._batch_env.observ[0], self._batch_env.action[0], self._batch_env.action[0], self._batch_env.action[0], self._batch_env.reward[0]) self._memory = memory.EpisodeMemory( template, config.update_every, config.max_length, 'memory') self._memory_index = tf.Variable(0, False) use_gpu = self._config.use_gpu and utility.available_gpus() with tf.device('/gpu:0' if use_gpu else '/cpu:0'): # Create network variables for later calls to reuse. self._network( tf.zeros_like(self._batch_env.observ)[:, None], tf.ones(len(self._batch_env)), reuse=None) cell = self._config.network(self._batch_env.action.shape[1].value) with tf.variable_scope('ppo_temporary'): self._episodes = memory.EpisodeMemory( template, len(batch_env), config.max_length, 'episodes') self._last_state = utility.create_nested_vars( cell.zero_state(len(batch_env), tf.float32)) self._last_action = tf.Variable( tf.zeros_like(self._batch_env.action), False, name='last_action') self._last_mean = tf.Variable( tf.zeros_like(self._batch_env.action), False, name='last_mean') self._last_logstd = tf.Variable( tf.zeros_like(self._batch_env.action), False, name='last_logstd') self._penalty = tf.Variable( self._config.kl_init_penalty, False, dtype=tf.float32) self._policy_optimizer = self._config.policy_optimizer( self._config.policy_lr, name='policy_optimizer') self._value_optimizer = self._config.value_optimizer( self._config.value_lr, name='value_optimizer')
def perform(self, agent_indices, observ): """Compute batch of actions and a summary for a batch of observation. Args: agent_indices: Tensor containing current batch indices. observ: Tensor of a batch of observations for all agents. Returns: Tuple of action batch tensor and summary tensor. """ with tf.name_scope('perform/'): observ = self._observ_filter.transform(observ) if self._last_state is None: state = None else: state = tf.contrib.framework.nest.map_structure( lambda x: tf.gather(x, agent_indices), self._last_state) use_gpu = self._config.use_gpu and utility.available_gpus() with tf.device('/gpu:0' if use_gpu else '/cpu:0'): output = self._network(observ[:, None], tf.ones(observ.shape[0]), state) action = tf.cond(self._is_training, output.policy.sample, lambda: output.mean) logprob = output.policy.log_prob(action)[:, 0] # pylint: disable=g-long-lambda summary = tf.cond( self._should_log, lambda: tf.summary.merge([ tf.summary.histogram('mean', output.mean[:, 0]), tf.summary.histogram('std', tf.exp(output.logstd[:, 0])), tf.summary.histogram('action', action[:, 0]), tf.summary.histogram('logprob', logprob) ]), str) # Remember current policy to append to memory in the experience callback. if self._last_state is None: assign_state = tf.no_op() else: assign_state = utility.assign_nested_vars( self._last_state, output.state, agent_indices) with tf.control_dependencies([ assign_state, tf.scatter_update(self._last_action, agent_indices, action[:, 0]), tf.scatter_update(self._last_mean, agent_indices, output.mean[:, 0]), tf.scatter_update(self._last_logstd, agent_indices, output.logstd[:, 0]) ]): return tf.check_numerics(action[:, 0], 'action'), tf.identity(summary)
def _network(self, observ, length=None, state=None, reuse=True): """Compute the network output for a batched sequence of observations. Optionally, the initial state can be specified. The weights should be reused for all calls, except for the first one. Output is a named tuple containing the policy as a TensorFlow distribution, the policy mean and log standard deviation, the approximated state value, and the new recurrent state. Args: observ: Sequences of observations. length: Batch of sequence lengths. state: Batch of initial recurrent states. reuse: Python boolean whether to reuse previous variables. Returns: NetworkOutput tuple. """ with tf.variable_scope('network', reuse=reuse): observ = tf.convert_to_tensor(observ) use_gpu = self._config.use_gpu and utility.available_gpus() with tf.device('/gpu:0' if use_gpu else '/cpu:0'): observ = tf.check_numerics(observ, 'observ') # The argument to self._config.network, self._batch_env.action.shape[1].value, is the # response dimension of the network. # How does the network outputs actions for all environments, given observations? # It is the same network, given different observations and initial states as inputs # return different values. Just like you apply a function multiple times with different # inputs to get different outputs. And the outputs here are (mean, logstd, value), each # element in the tuple has the first dimension as the environment id. cell = self._config.network( self._batch_env.action.shape[1].value) (mean, logstd, value), state = tf.nn.dynamic_rnn(cell=cell, inputs=observ, sequence_length=length, initial_state=state, dtype=tf.float32, swap_memory=True) mean = tf.check_numerics(mean, 'mean') logstd = tf.check_numerics(logstd, 'logstd') value = tf.check_numerics(value, 'value') policy = tf.contrib.distributions.MultivariateNormalDiag( mean, tf.exp(logstd)) return _NetworkOutput(policy, mean, logstd, value, state)
def __init__(self, batch_env, step, is_training, should_log, config): """Create an instance of the PPO algorithm. Args: batch_env: In-graph batch environment. step: Integer tensor holding the current training step. is_training: Boolean tensor for whether the algorithm should train. should_log: Boolean tensor for whether summaries should be returned. config: Object containing the agent configuration as attributes. """ self._batch_env = batch_env self._step = step self._is_training = is_training self._should_log = should_log self._config = config self._observ_filter = normalize.StreamingNormalize( self._batch_env.observ[0], center=True, scale=True, clip=5, name='normalize_observ') self._reward_filter = normalize.StreamingNormalize( self._batch_env.reward[0], center=False, scale=True, clip=10, name='normalize_reward') # Memory stores tuple of observ, action, mean, logstd, reward. template = (self._batch_env.observ[0], self._batch_env.action[0], self._batch_env.action[0], self._batch_env.action[0], self._batch_env.reward[0]) self._memory = memory.EpisodeMemory(template, config.update_every, config.max_length, 'memory') self._memory_index = tf.Variable(0, False) use_gpu = self._config.use_gpu and utility.available_gpus() with tf.device('/gpu:0' if use_gpu else '/cpu:0'): # Create network variables for later calls to reuse. action_size = self._batch_env.action.shape[1].value self._network = tf.make_template( 'network', functools.partial(config.network, config, action_size)) output = self._network( tf.zeros_like(self._batch_env.observ)[:, None], tf.ones(len(self._batch_env))) with tf.variable_scope('ppo_temporary'): self._episodes = memory.EpisodeMemory(template, len(batch_env), config.max_length, 'episodes') if output.state is None: self._last_state = None else: # Ensure the batch dimension is set. tf.contrib.framework.nest.map_structure( lambda x: x.set_shape([len(batch_env)] + x.shape. as_list()[1:]), output.state) # pylint: disable=undefined-variable self._last_state = tf.contrib.framework.nest.map_structure( lambda x: tf.Variable(lambda: tf.zeros_like(x), False), output.state) self._last_action = tf.Variable(tf.zeros_like( self._batch_env.action), False, name='last_action') self._last_mean = tf.Variable(tf.zeros_like( self._batch_env.action), False, name='last_mean') self._last_logstd = tf.Variable(tf.zeros_like( self._batch_env.action), False, name='last_logstd') self._penalty = tf.Variable(self._config.kl_init_penalty, False, dtype=tf.float32) self._optimizer = self._config.optimizer(self._config.learning_rate)