示例#1
0
                                            tables.Atom.from_dtype(y.dtype),
                                            shape=(0, ),
                                            filters=filters,
                                            expectedrows=len(y))
        for n, (d, c) in enumerate(zip(x, y)):
            x_storage.append(x[n][None])
            y_storage.append(y[n][None])
        hdf5_file.close()

    if wins[new_challenger_name] > (win_threshold * games_played):
        if random_player_1:
            random_player_1 = False
        print("NEW BEST PLAYER")
        best_model = last_model + iters
    else:
        best_model = best_model

    print('TRAINING NEW MODEL')
    hdf5_path = "./data/data.hdf5"
    extendable_hdf5_file = tables.open_file(hdf5_path, mode='r')
    x = extendable_hdf5_file.root.x[:]
    y = extendable_hdf5_file.root.y[:]
    extendable_hdf5_file.close()

    ai = AI()
    ai.load_data(x, y)
    ai.create_model()
    ai.train_model()
    ai.save_model('model', index=iters + last_model + 1)
    print("MODEL TRAINED LETS GO")
    iters += 1
示例#2
0
from ai.ai import AI
import keras
import tables
import constants

constants.use_gpu()

print("Loading data")
hdf5_path = "./data/seeded.hdf5"
extendable_hdf5_file = tables.open_file(hdf5_path, mode='r')
x = extendable_hdf5_file.root.x[:]
y = extendable_hdf5_file.root.y[:]
extendable_hdf5_file.close()
print("Data loaded")

latest_version = None

ai = AI()
ai_name = 'seeded_last_20'
ai.load_data(x, y)
print("AI Loaded data")
if latest_version is None:
    ai.create_model()
    latest_version = -1
else:
    ai.load_model(ai_name, index=latest_version)
    print("AI Model Loaded")
x, y = ai.filter_by_tiles_collected(20)
ai.train_model(x=x, y=y)
ai.save_model(ai_name, index=latest_version + 1)
示例#3
0
class NaiveAIPlayer(Player):
    def __init__(self,
                 player_id,
                 name,
                 game,
                 main_name=None,
                 index=None,
                 initialize=False,
                 filtered_moves=None):
        Player.__init__(self, player_id, name, game)
        self.ai = AI()
        if not initialize:
            assert main_name is not None
            assert index is not None
            self.ai.load_model(main_name, index=index)
        else:
            self.ai.create_model()
        self.filtered_moves = filtered_moves

    def get_model_move(self, possible_moves):
        new_states = None
        for move in possible_moves:
            '''
            start = time.time()
            cloned_game = deepcopy(self.game)
            print(time.time() - start)

            start = time.time()
            cloned_game.do_move(move, save_history=False)
            print(time.time() - start)
            start = time.time()
            new_state = cloned_game.get_state().convert_to_xs_for_neural_net()
            print(time.time() - start)
            '''
            new_state = self.state_from_move(
                move).convert_to_xs_for_neural_net()
            if new_states is None:
                new_states = new_state
            else:
                new_states = np.concatenate((new_states, new_state), axis=0)
        predictions = self.ai.make_prediction(new_states)
        choice_index = choose_from_probs(predictions)
        return possible_moves[choice_index]

    def get_random_move(self, possible_moves):
        return random.choice(possible_moves)

    def move(self):
        possible_moves = self.game.get_possible_moves(self)
        if self.filtered_moves is not None:
            if (
                    self.game.get_moves_played() - 1
            ) >= self.filtered_moves:  # -1 because the next state is equal to the
                # filtered moves...also should be tiles collected but whatevr
                move = self.get_model_move(possible_moves)
            else:
                move = self.get_random_move(possible_moves)
        else:
            move = self.get_random_move(possible_moves)
        return move

    def state_from_move(self, action):
        player_id = action.player.get_player_id()
        player_who_moved = player_id
        new_board = deepcopy(self.game.board)
        new_player_index = None
        new_players = deepcopy([p.get_state() for p in self.game.players
                                ])  # [penguins, score, tiles_collected]
        for i, player in enumerate(self.game.players):
            if player_id == player.get_player_id():
                new_player_index = i
            else:
                next_player_id = player.get_player_id()
        if new_player_index is None:
            raise Exception("This player not playing")
        cur_player = new_players[new_player_index]
        next_player_index = 1 if new_player_index == 0 else 0
        next_player = new_players[next_player_index]
        player_ids = deepcopy(self.game.get_player_ids())

        if action.type == "move":
            hex_from = new_board.pieces[action.start]
            hex_from.move_penguin_away()

            cur_player[2] += 1
            cur_player[1] += hex_from.value

            hex_from.empty()

            if action.start != action.end:
                hex_to = new_board.pieces[action.end]
                hex_to.move_penguin_here()

            start = action.start
            end = action.end
            for i, penguin in enumerate(cur_player[0]):
                if penguin == start:
                    if start == end:
                        # penguin died
                        cur_player[0][i] = end = -1
                    else:
                        cur_player[0][i] = end
                    break

            if next_player[0] == [-1, -1, -1, -1]:
                next_player_id = player_id
        elif action.type == "place":
            player_who_moved = player_id
            hex = new_board.pieces[action.start]
            hex.move_penguin_here()
            cur_player[0].append(action.start)
        else:
            raise Exception("WRONG ACTION TYPE")
        return FishState(deepcopy(new_board.pieces), deepcopy(new_players),
                         deepcopy(next_player_id), deepcopy(player_who_moved),
                         deepcopy(player_ids))

    def train_and_save_new_model(self, x, y, new_index):
        self.ai.load_data(x, y)
        self.ai.create_model()
        self.ai.train_model()
        self.ai.save_model('model', index=new_index)
import numpy as np
from ai.ai import AI
import keras
import tables

data_filename = 'data'

hdf5_path = "./data/{0}.hdf5".format(data_filename)
extendable_hdf5_file = tables.open_file(hdf5_path, mode='r')
x = extendable_hdf5_file.root.x[:]
y = extendable_hdf5_file.root.y[:]
extendable_hdf5_file.close()

latest_version = None

ai = AI()
ai.load_data(x,y)
if latest_version is None:
    ai.create_model()
    latest_version = -1
else:
    ai.load_model('model', index=latest_version)
ai.train_model()
ai.save_model('model', index=latest_version+1)