def testNotEqualOtherClass(self): spec_1 = array_spec.ArraySpec((1, 2, 3), np.int32) spec_2 = None self.assertNotEqual(spec_1, spec_2) self.assertNotEqual(spec_2, spec_1) spec_2 = () self.assertNotEqual(spec_1, spec_2) self.assertNotEqual(spec_2, spec_1)
def testNotEqualOtherClass(self): spec_1 = array_spec.BoundedArraySpec( (1, 2), np.int32, minimum=[0.0, -0.6], maximum=[1.0, 1.0]) spec_2 = array_spec.ArraySpec((1, 2), np.int32) self.assertNotEqual(spec_1, spec_2) self.assertNotEqual(spec_2, spec_1) spec_2 = None self.assertNotEqual(spec_1, spec_2) self.assertNotEqual(spec_2, spec_1) spec_2 = () self.assertNotEqual(spec_1, spec_2) self.assertNotEqual(spec_2, spec_1)
def _compute_observation_spec(self): """Helper for `__init__`: compute our environment's observation spec.""" # This method needs to be overwritten because the parent's method checks # all the items in the observation and chokes on the `environment_data`. #print("_compute_observation_spec not overwritten") #TODO is this important? Says it should be overwritten and it is hitting here. # Start an environment, examine the values it gives to us, and reset things # back to default. timestep = self.reset() observation_spec = { k: specs.ArraySpec(v.shape, v.dtype, name=k) for k, v in six.iteritems(timestep.observation) if k != EXTRA_OBSERVATIONS } observation_spec[EXTRA_OBSERVATIONS] = dict() self._drop_last_episode() return observation_spec
def _compute_observation_spec(self): """Helper for `__init__`: compute our environment's observation spec.""" # Start an environment, examine the values it gives to us, and reset things # back to default. timestep = self.reset() observation_spec = { k: specs.ArraySpec(v.shape, v.dtype, name=k) for k, v in six.iteritems(timestep.observation) } # As long as we've got environment result data, we try checking to make sure # that the reward types can be added together---a very weak way of measuring # whether they are compatible. if timestep.reward is not None: try: _ = timestep.reward + self._default_reward except TypeError: raise TypeError( 'A pycolab game wrapped by an Environment adapter returned ' 'a first reward whose type is incompatible with the default reward ' "given to the adapter's `__init__`.") self._drop_last_episode() return observation_spec
def testGenerateValue(self): spec = array_spec.ArraySpec((1, 2), np.int32) test_value = spec.generate_value() spec.validate(test_value)
def testValidateShape(self): spec = array_spec.ArraySpec((1, 2), np.int32) spec.validate(np.zeros((1, 2), dtype=np.int32)) with self.assertRaises(ValueError): spec.validate(np.zeros((1, 2, 3), dtype=np.int32))
def testNotEqualDifferentDtype(self): spec_1 = array_spec.ArraySpec((1, 2, 3), np.int64) spec_2 = array_spec.ArraySpec((1, 2, 3), np.int32) self.assertNotEqual(spec_1, spec_2)
def testEqual(self): spec_1 = array_spec.ArraySpec((1, 2, 3), np.int32) spec_2 = array_spec.ArraySpec((1, 2, 3), np.int32) self.assertEqual(spec_1, spec_2)
def testShape(self): spec = array_spec.ArraySpec([1, 2, 3], np.int32) self.assertEqual((1, 2, 3), spec.shape)
def testDtype(self): spec = array_spec.ArraySpec((1, 2, 3), np.int32) self.assertEqual(np.int32, spec.dtype)
def testNumpyDtype(self): array_spec.ArraySpec((1, 2, 3), np.int32)
def testStringDtype(self): array_spec.ArraySpec((1, 2, 3), "int32")
def testDtypeTypeError(self): with self.assertRaises(TypeError): array_spec.ArraySpec((1, 2, 3), "32")
def testShapeTypeError(self): with self.assertRaises(TypeError): array_spec.ArraySpec(32, np.int32)