def __init__( self, directory_path: str, t: int, alpha: float, beta: float, btm_exe_path: str = Tools.get_path("..", "BTM-master", "src", "btm.exe"), n_iter: int = 10000, # To guarantee convergence model_dir_suffix: str = "", doc_inference_type: str = "sum_b"): self.directory_path = directory_path self.t = t self.alpha = alpha self.beta = beta self.n_iter = n_iter self.doc_index = [] # the index of the files read for reference self.w = None self.btm_exe = btm_exe_path self.doc_inf_type = "sum_b" # Due to later dependant computations self.output_dir = Tools.get_path(directory_path, f"BTM_{model_dir_suffix}") self.plain_corpus_path = Tools.get_path(self.output_dir, "btmcorpus.txt") self.tokenised_btmcorpus_filepath = Tools.get_path( self.output_dir, "vectorised", "tokenised_btmcorpus.txt") self.vocab_ids_path = Tools.get_path(self.output_dir, "vectorised", "voca_pt")
def generate_gibbs_states_plots(self, states_path: str, cat: str = "likelihood"): new_dir = Tools.get_path(states_path, f"{cat}_plots") if Tools.path_exists(new_dir): print("Plots found, skipping..") return Tools.initialise_directory(new_dir) with Tools.scan_directory(states_path) as outputs: for i, output in enumerate(outputs): try: state_file = Tools.get_path(output.path, "state.log") df = pd.read_csv(filepath_or_buffer=state_file, delim_whitespace=True, index_col="iter") ax = sns.lineplot(x=df.index, y=cat, data=df) ax.margins(x=0) name = output.name fig = ax.get_figure() fig.savefig(Tools.get_path(states_path, f"{cat}_plots", f"{name}.png"), dpi=300, bbox_incehs="tight", format="png") fig.clf() print(f"{i}") except FileNotFoundError: print(f"→ Skipping {output.name}")
def _generate_lda_c_corpus(self): """ Convert a group of files LDA_C corpus and store it on disk""" bow_corpus, id2word_map, plain_docs = self._convert_corpus_to_bow() # Sterialise into LDA_C and store on disk output_dir = Tools.get_path( self.input_docs_path, f"lda_c_format_{self.hdp_eta:0.1f}_{self.hdp_gamma_s:0.1f}", f"_{self.hdp_alpha_s:0.1f}_common_{self.drop_uncommon}") Tools.initialise_directory(output_dir) save_location = Tools.get_path(output_dir, f"{self.lda_c_fname}.dat") bleicorpus.BleiCorpus.serialize(fname=save_location, corpus=bow_corpus, id2word=id2word_map) return plain_docs, bow_corpus
def _invoke_gibbs_hdp(self): """Invoke Gibbs hdp posterior inference on the corpus""" path_executable = Tools.get_path(self.hdp_path, "hdp.exe") param_data = Tools.get_path( self.input_docs_path, f"lda_c_format_{self.hdp_eta:0.1f}_{self.hdp_gamma_s:0.1f}", f"_{self.hdp_alpha_s:0.1f}_common_{self.drop_uncommon}", f"{self.lda_c_fname}.dat") param_directory = Tools.get_path(self.input_docs_path, self.hdp_output_directory) # Prepare the output directory Tools.initialise_directory(param_directory) if self.hdp_seed is not None and self.hdp_seed > 0: ret = s.run([ path_executable, "--algorithm", "train", "--data", param_data, "--directory", param_directory, "--max_iter", str(self.hdp_iterations), "--sample_hyper", "yes" if self.hdp_hyper_sampling else "no", "--save_lag", "-1", "--eta", str(self.hdp_eta), "--random_seed", str(self.hdp_seed), "--gamma_a", str(self.hdp_gamma_s), "--alpha_a", str(self.hdp_alpha_s) ], check=True, capture_output=True, text=True) else: ret = s.run([ path_executable, "--algorithm", "train", "--data", param_data, "--directory", param_directory, "--max_iter", str(self.hdp_iterations), "--sample_hyper", "yes" if self.hdp_hyper_sampling else "no", "--save_lag", "-1", "--eta", str(self.hdp_eta), "--gamma_a", str(self.hdp_gamma_s), "--alpha_a", str(self.hdp_alpha_s) ], check=True, capture_output=True, text=True) return ret.stdout
def _infer_btm_pz_d(self): """Invoke Gibbs BTM docs inference on the corpus""" ret = s.run([ self.btm_exe, "inf", self.doc_inf_type, str(self.t), self.tokenised_btmcorpus_filepath, Tools.get_path(self.output_dir, "") ], check=True, capture_output=True, text=True) return ret.stdout
def _estimate_btm(self): """Invoke Gibbs BTM posterior inference on the tokenised corpus""" ret = s.run( [ self.btm_exe, "est", str(self.t), str(self.w), str(self.alpha), str(self.beta), str(self.n_iter), str(self.n_iter), # Save Step self.tokenised_btmcorpus_filepath, Tools.get_path(self.output_dir, "") ], check=True, capture_output=True, text=True) return ret.stdout
def _load_lss_representation_into_df(self) -> pd.DataFrame: """ Load a BoT LSS representation from disk to a returned dataframe. Returns ------- lss_df : pd.DataFrame A matrix of shape (n_samples, n_features) Raises ------ FileNotFoundError When the LSS representation isn't found on disk. """ path = Tools.get_path(self.input_docs_path, self.hdp_output_directory, "mode-word-assignments.dat") # We don't need document tables, so we'll skip the relative column, # But we do need word counts under each topic, to produce some sort # of a bag-of-topics model (BoT) try: lss_df = pd.read_csv(filepath_or_buffer=path, delim_whitespace=True) # usecols=["d", "w", "z"]).drop_duplicates() # Produce topic weights as counts of topic words lss_df = lss_df.pivot_table(values='w', columns='z', index='d', aggfunc='count', fill_value=0) # Index with file names for later reference lss_df.index = self.doc_index return lss_df except FileNotFoundError: print(("\nNo LSS precomputed file was found on disk via:\n{}\n" "> Please generate LDA-C corpus and run HDP first...\n" ).format(path)) raise
def traverse_gamma_alpha(self, ps: int, tail_prcnt: float = 0.80, verbose: bool = True): ldac_path = Tools.get_path("lda_c_format_HyperFalse", "dummy_ldac_corpus.dat") dat_path = Tools.get_path(self.training_folder, f"problem{ps:03d}", ldac_path) directory = Tools.get_path(self.out_dir, "gamma_alpha") path_executable = Tools.get_path(self.hdp_path, "hdp.exe") res = defaultdict(list) total_work = len(self.gammas)**2 * len(self.alphas)**2 c = 0 print("----------------------------------------------------") for g_s, g_r in product(self.gammas, repeat=2): for a_s, a_r in product(self.alphas, repeat=2): for a_r in self.alphas: c = c + 1 progress = 100.0 * c / total_work suff = f"_{g_s:0.2f}_{g_r:0.2f}_{a_s:0.2f}_{a_r:0.2f}" if verbose: print(f"► Working on " f"Gamma({g_s:0.2f},{g_r:0.2f}) " f"and Alpha({a_s:0.2f},{a_r:0.2f}) " f"[{progress:06.2f}%]") s.run([ path_executable, "--algorithm", "train", "--data", dat_path, "--directory", Tools.get_path(directory, f"{c:03d}", f"hdp_out{suff}"), "--max_iter", str(500), "--sample_hyper", "no", "--save_lag", "-1", "--eta", "0.5", "--random_seed", str(self.seed), "--gamma_a", str(g_s), "--gamma_b", str(g_r), "--alpha_a", str(a_s), "--alpha_b", str(a_r) ], check=True, capture_output=True, text=True) # Read the likelihood ll = pd.read_csv(Tools.get_path(directory, f"{c:03d}hdp_out{suff}", "state.log"), delim_whitespace=True).likelihood.tail( round(tail_prcnt * 500)).mean() res["gamma_shape"].append(g_s) res["gamma_rate"].append(g_r) res["alpha_shape"].append(a_s) res["alpha_rate"].append(a_r) res["gamma"].append(g_s * g_r) res["alpha"].append(a_s * a_r) res["likelihood"].append(ll) # Save the results to disk df_res = pd.DataFrame(res) df_res.to_csv(Tools.get_path(directory, "results.csv"), index=False) if verbose: print("---------------------- Done ------------------------") return df_res
def smart_optimisation(self, plot_cat: str = "likelihood", tail_prcnt: float = 0.80, skip_factor: int = 1, verbose: bool = False): # First generate the outputs to compare: words_counts = self._generate_hdps_outputs(skip_factor=skip_factor, verbose=verbose) ret = {} # Loop over the outputs of different etas master_folder = Tools.get_path(self.out_dir, "optimisation") log_likelihoods = [] avg_num_topics = [] std_num_topics = [] pw_ll = [] errors = [] with Tools.scan_directory(master_folder) as perms: for perm in perms: # generate plots if not Tools.is_path_dir(perm.path): continue self.generate_gibbs_states_plots(states_path=perm.path, cat=plot_cat) with Tools.scan_directory(perm.path) as problems: for problem in problems: try: n_words = words_counts[problem.name] path_state = Tools.get_path( problem.path, "state.log") df_state = pd.read_csv( filepath_or_buffer=path_state, delim_whitespace=True, index_col="iter", usecols=["iter", "likelihood", "num.topics"]) ll = df_state.likelihood.tail( round(len(df_state) * tail_prcnt)).mean() avg_topics = df_state["num.topics"].tail( round(len(df_state) * tail_prcnt)).mean() std_topics = df_state["num.topics"].tail( round(len(df_state) * tail_prcnt)).std() log_likelihoods.append(ll) pw_ll.append(ll / n_words) avg_num_topics.append(avg_topics) std_num_topics.append(std_topics) except FileNotFoundError as e: print(f"{e}") errors.append(f"{e}") continue except KeyError: # Plots folders are being queried for n_words continue ret.update({ f"{perm.name}": [ round(sum(log_likelihoods) / len(log_likelihoods), 4), round(sum(pw_ll) / len(pw_ll), 4), round(sum(avg_num_topics) / len(avg_num_topics), 4), round(sum(std_num_topics) / len(std_num_topics), 4) ] }) # Save any encountered errors to disk too Tools.save_list_to_text(mylist=errors, filepath=Tools.get_path( self.out_dir, "optimisation", "opt_errors.txt")) pd.DataFrame(data=ret, index=["Log-l", "PwLL", "T-Avg", "T-Std" ]).T.to_csv(Tools.get_path(self.out_dir, "optimisation", "optimisation.csv"), index=True) return ret
def _generate_hdps_outputs(self, skip_factor: int = 1, verbose: bool = False): st = time.perf_counter() ldac_path = Tools.get_path("lda_c_format_HyperFalse", "dummy_ldac_corpus.dat") words_nums = {} vocab_file = Tools.get_path("lda_c_format_HyperFalse", "dummy_ldac_corpus.dat.vocab") # size = ((60 // skip_factor) # * len(self.etas) # * len(self.gammas)**2 # * len(self.alphas)**2) # Since we fixed the scales of Gammas size = ((60 // skip_factor) * len(self.etas) * len(self.gammas) * len(self.alphas)) i = 0 with Tools.scan_directory(self.training_folder) as ps_folders: for c, folder in enumerate(ps_folders): if not folder.name[0:7] == "problem": if verbose: print(f"→ Skipping {folder.name}") continue # Implement the skipping factor if c % skip_factor != 0: continue t = time.perf_counter() # Fix the scale parameters for the Gamma priors g_r = 1 a_r = 1 for eta in self.etas: # for g_s, g_r in product(self.gammas, repeat=2): # for a_s, a_r in product(self.alphas, repeat=2): # Only switch the shape parameter of Gammas for g_s in self.gammas: for a_s in self.alphas: # Cache the number of words for later if folder.name not in words_nums: vocab_path = Tools.get_path( folder.path, vocab_file) n_words = self._get_number_words(vocab_path) words_nums.update({folder.name: n_words}) i = i + 1 percentage = f"{100 * i / size:06.02f}" suff = (f"{g_s:0.2f}_{g_r:0.2f}_" f"{a_s:0.2f}_{a_r:0.2f}") if verbose: print(f"► Applying HDP with " f"eta={eta:0.1f} " f"gamma({g_s:0.2f}, {g_r:0.2f}) " f"alpha({a_s:0.2f}, {a_r:0.2f}) " f"on {folder.name} [{percentage}%]") directory = Tools.get_path(self.out_dir, "optimisation", f"{eta:0.1f}__{suff}", folder.name) if (Tools.path_exists(directory)): if verbose: print("\tcached result found at " f"{directory}") continue path_executable = r"{}\hdp.exe".format( self.hdp_path) data = Tools.get_path(folder.path, ldac_path) # Prepare the output directory Tools.initialise_directories(directory) if self.seed is not None: s.run([ path_executable, "--algorithm", "train", "--data", data, "--directory", directory, "--max_iter", str(self.iters), "--sample_hyper", "no", "--save_lag", "-1", "--eta", str(eta), "--gamma_a", str(g_s), "--gamma_b", str(g_r), "--alpha_a", str(a_s), "--alpha_b", str(a_r), "--random_seed", str(self.seed) ], stdout=s.DEVNULL, check=True, capture_output=False, text=True) else: s.run([ path_executable, "--algorithm", "train", "--data", data, "--directory", directory, "--max_iter", str(self.iters), "--sample_hyper", "no", "--save_lag", "-1", "--eta", str(eta), "--gamma_a", str(g_s), "--gamma_b", str(g_r), "--alpha_a", str(a_s), "--alpha_b", str(a_r) ], stdout=s.DEVNULL, check=True, capture_output=False, text=True) if verbose: print(f"--- {folder.name} done in " f"{time.perf_counter() - t:0.1f} seconds ---") period = round(time.perf_counter() - st, 2) print(f"----- Vectorisation done in {period} seconds -----") return words_nums
def assess_hyper_sampling(self, tail_prcnt: float, verbose: bool = False): """ A function to measure the average per word log-likelihood after hyper-sampling the concentration parameters of the Dirichlet distributions. Caution: the hdp must have been run on the data with hyper sampling and without it, in order to load the two representations and compare. Returns ------- dct: dict A dictionary containing the per word log-likelihood of the train data with the two methods pertaining to sampling the concentration parameters: normal and hyper. """ path_normal = Tools.get_path(".", "hdp_lss_HyperFalse", "state.log") path_hyper = Tools.get_path(".", "hdp_lss_HyperTrue", "state.log") path_ldac = Tools.get_path(".", "lda_c_format_HyperTrue", "dummy_ldac_corpus.dat.vocab") per_word_ll_normal = [] per_word_ll_hyper = [] if verbose: print("------Concentration Parameters Optimisation------") with Tools.scan_directory(self.training_folder) as dirs: for d in dirs: if d.name[0:7] != "problem": continue if verbose: print(f"\t► Processing {d.name}") normal = Tools.get_path(d.path, path_normal) hyper = Tools.get_path(d.path, path_hyper) vocab = Tools.get_path(d.path, path_ldac) n_words = self._get_number_words(vocab) df_normal = pd.read_csv(filepath_or_buffer=normal, delim_whitespace=True, index_col="iter", usecols=["iter", "likelihood"], squeeze=True) ll_normal = df_normal.tail(round(len(df_normal) * tail_prcnt)).mean() per_word_ll_normal.append(ll_normal / n_words) df_hyper = pd.read_csv(filepath_or_buffer=hyper, delim_whitespace=True, index_col="iter", usecols=["iter", "likelihood"], squeeze=True) ll_hyper = df_hyper.tail(round(len(df_hyper) * tail_prcnt)).mean() per_word_ll_hyper.append(ll_hyper / n_words) dct = { "Normal_Sampling": round(sum(per_word_ll_normal) / len(per_word_ll_normal), 4), "Hyper_Sampling": round(sum(per_word_ll_hyper) / len(per_word_ll_hyper), 4) } if verbose: print("-------------------------------------------------") pd.DataFrame(data=dct, index=[0 ]).to_csv(f"{self.out_dir}/hyper_optimisation.csv", index=False) return dct
def main(): # Specify which topic model to use? use_btm = True if use_btm: # Control Parameters ### train_phase = True t = 10 # number of btm topics ########################## print("\n-------------------------------------") print("BTM modelling and authorial clustering") print("-------------------------------------\n") if train_phase: r = range(1, 2) dpath = Tools.get_path( r"D:\Projects\Authorial_Clustering_Short_Texts_nPTM" r"\Datasets\pan17_train") else: r = range(1, 121) dpath = (r"D:\Projects\Authorial_Clustering_Short_Texts_nPTM" r"\Datasets\pan17_test") for ps in r: # Loop over the problemsets ps_path = Tools.get_path(dpath, f"problem{ps:03d}") print(f"\nProcessing #{ps:03d}:") # Inferring BTM ### ##################### # TODO: avoid creating r BTM objects by delegating ps_path btm = LssBTModeller(directory_path=ps_path, t=t, alpha=1.0, beta=0.01, model_dir_suffix="remove_stopwords_puncts") btm.infer_btm(remove_bg_terms=True, drop_puncs=True, use_biterm_freqs=False) print("\t→ btm inference done") else: print("Main thread started..\n") folders_path = (r"D:\College\DKEM\Thesis" r"\AuthorshipClustering\Datasets\pan17_train") hdp = r"D:\College\DKEM\Thesis\AuthorshipClustering\Code\hdps\hdp" optimiser = LssOptimiser(train_folders_path=folders_path, hdp_path=hdp, ldac_filename="dummy_ldac_corpus.dat", hdp_seed=None, eta_range=[0.3, 0.5, 0.8, 1], gamma_range=[0.1, 0.3, 0.5], alpha_range=[0.1, 0.3, 0.5], out_dir=Tools.get_path(".", "__outputs__"), hdp_iters=1000) ret_eta = optimiser.smart_optimisation(tail_prcnt=0.8, skip_factor=5, plot_cat="num.tables", verbose=True) print(ret_eta) print("Done.")