示例#1
0
def main():
    """
    Demo how to run an agent
    """
    dirname = os.path.dirname(__file__)

    if (len(sys.argv) > 1):
        env_configName = str(sys.argv[1])
        agent_configName = str(sys.argv[2])

    else:
        print("Default config ")
        env_configName = "./configs/factory_floor_experiment.yaml"
        env_filename = os.path.join(dirname, env_configName)
        agent_configName = "./configs/agent_combined_config.yaml"
        agent_filename = os.path.join(dirname, agent_configName)

    env_parameters = getParameters(env_filename)
    agent_parameters = getParameters(agent_filename)

    # whao, you need to know exact contents of all files here..
    recursive_update(
        agent_parameters['subAgentList'][0]['parameters']['simulator'],
        env_parameters['environment'])

    print(env_parameters)
    print(agent_parameters)

    random.seed(env_parameters['seed'])
    maxSteps = env_parameters['max_steps']
    baseEnv = FactoryFloor(env_parameters['environment'])
    packedActionSpace = PackedSpace(baseEnv.action_space,
                                    {"robots": ["robot1", "robot2", "robot3"]})
    env = ModifiedGymEnv(baseEnv, packedActionSpace)

    logging.info("Starting example MCTS agent")
    logoutput = io.StringIO("episode output log")

    try:
        logoutputpickle = open('./' + os.environ["SLURM_JOB_ID"] + '.pickle',
                               'wb')
    except KeyError:
        print("No SLURM_JOB_ID found")
        logoutputpickle = io.BytesIO()

    obs = env.reset()
    complexAgent = createAgent(env.action_space, env.observation_space,
                               agent_parameters)

    experiment = Experiment(complexAgent, env, maxSteps, render=True)
    experiment.addListener(JsonLogger(logoutput))
    experiment.addListener(PickleLogger(logoutputpickle))
    stats, confidence_ints = experiment.run()
    logoutputpickle.close()

    print("json output:", logoutput.getvalue())

    print("\n\nREWARD STATS: " + str(stats) + " \nCONFIDENCE INTERVALS " +
          str(confidence_ints))
示例#2
0
def main():
    """
    Demo how to run an agent
    """
    if( len(sys.argv) > 1 ):
        configName = str(sys.argv[1])
        filename = configName
    else:
        print("Default config ")
        configName = "./configs/new_traffic_loop_ppo.yaml"
        dirname = os.path.dirname(__file__)
        filename = os.path.join(dirname, configName)

    print( "Config name " + configName )
    logging.info("Starting example PPO agent")
    logoutput = io.StringIO("episode output log")
    parameters = getParameters(filename)

    env = SumoGymAdapter(parameters['all'])

    # here we initialize all agents (in that case one)
    PPOAgents = []
    env.reset()
    for intersectionId in env.action_space.spaces.keys():
        PPOAgents.append(PPOAgent(agentId=intersectionId, environment=env, parameters=parameters['all']))
    complexAgent = BasicComplexAgent(PPOAgents)

    experiment = Experiment(complexAgent, env, parameters['all']['max_steps'], parameters['all']['seedlist'], render=False)
    experiment.addListener(JsonLogger(logoutput))
    experiment.run()
    def test_FactoryFloorAgent(self):
        logging.info("Starting test factoryfloor agent")
        dirname = os.path.dirname(__file__)
        filename = os.path.join(dirname,
                                "../configs/factory_floor_simple.yaml")
        parameters = getParameters(filename)

        env = FactoryFloor(parameters)
        randomAgents = []
        for robotId in env.action_space.spaces.keys():
            randomAgents.append(
                FactoryFloorAgent(robotId, env.action_space,
                                  env.observation_space, parameters))
        complexAgent = BasicComplexAgent(randomAgents, env.action_space,
                                         env.observation_space)
        Experiment(complexAgent, env, 1000, None, True).run()
示例#4
0
def main():
    """
    Demo how to construct complex agents
    """
    configName = "configs/factory_floor_complex.yaml"
    dirname = os.path.dirname(__file__)
    filename = os.path.join(dirname, configName)

    parameters = getParameters(filename)

    env = FactoryFloor(parameters['environment'])
    obs = env.reset()

    complexAgent = createAgent(env.action_space, env.observation_space,
                               parameters['agents'])
    print(complexAgent)
    sub = complexAgent._agentSubcomponents[0]
    subsub = sub._agentSubcomponents
    print(subsub)
    def est_PPO_agent(self):
        logging.info("Starting test PPO agent")
        dirname = os.path.dirname(__file__)
        filename = os.path.join(dirname,
                                "../configs/factory_floor_simple.yaml")
        parameters = getParameters(filename)

        env = FactoryFloor(parameters)
        PPOAgents = []
        for robotId in env.action_space.spaces.keys():
            PPOAgents.append(
                PPOAgent(parameters, env.observation_space,
                         env.action_space.spaces.get(robotId), robotId))

        complexAgent = BasicComplexAgent(PPOAgents)
        steps = 0

        while steps < parameters["max_steps"]:
            steps += Episode(complexAgent, env,
                             env.action_space.sample()).run()
    def test_mcts_agent(self):
        """
        Really a smoketest/demo how to run an agent
        """
        logging.info("Starting test_mcts_agent")
        dirname = os.path.dirname(__file__)
        filename = os.path.join(dirname,
                                "../configs/factory_floor_simple.yaml")
        parameters = getParameters(filename)
        env = FactoryFloor(parameters)
        obs = env.reset()

        mctsAgents = []

        randomagent = 'aiagents.single.RandomAgent.RandomAgent'
        for robotId in env.action_space.spaces.keys():
            mctsparams = {
                'treeAgent': {
                    'class': randomagent,
                    'id': robotId,
                    'parameters': {}
                },
                'rolloutAgent': {
                    'class': randomagent,
                    'id': robotId,
                    'parameters': {}
                }
            }
            mctsparams['simulator'] = dict(parameters)
            mctsparams['simulator'][
                'fullname'] = "aienvs.FactoryFloor.FactoryFloor.FactoryFloor"

            mctsAgents.append(
                MctsAgent(robotId, env.action_space, env.observation_space,
                          mctsparams))

        complexAgent = BasicComplexAgent(mctsAgents, env.action_space,
                                         env.observation_space)

        episode = Episode(complexAgent, env, obs, render=True)
        episode.run()
示例#7
0
def main():
    if (len(sys.argv) > 1):
        configName = str(sys.argv[1])
        filename = configName
    else:
        print("Default config ")
        configName = "../configs/PPO.yaml"
        dirname = os.path.dirname(__file__)
        filename = os.path.join(dirname, configName)

    logging.info("Starting example warehouse DQN agent")
    logoutput = io.StringIO("episode output log")
    parameters = getParameters(filename)

    env = Warehouse()
    # here we initialize all agents (in that case one)
    agents = []
    env.reset()
    for agent_id, action_space in env.action_space.spaces.items():
        agents.append(
            WarehouseNaiveAgent(robot_id=agent_id,
                                actionspace=action_space,
                                observationspace=env.observation_space))
    breakpoint()
    agents[20] = PPOAgent(agentId=20,
                          actionspace=env.action_space[20],
                          observationspace=env.observation_space,
                          parameters=parameters['all'])
    multi_agent = MultiAgent(agents)
    experiment = Experiment(
        multi_agent,
        env,
        maxSteps=1e6,
        render=True,
        seedlist=[random.randrange(1, 1e3, 1) for i in range(int(1e5))],
        renderDelay=0.5)
    experiment.addListener(JsonLogger(logoutput))
    experiment.run()
示例#8
0
def main():
    """
    MCTS Factory Floor experiment
    """
    dirname = os.path.dirname(__file__)

    parser = configargparse.ArgParser()
    parser.add('-e',
               '--env-config',
               dest="env_filename",
               default=os.path.join(
                   dirname, "./debug_configs/factory_floor_experiment.yaml"))
    parser.add('-a',
               '--agent-config',
               dest="agent_filename",
               default=os.path.join(dirname,
                                    "./debug_configs/agent_config.yaml"))
    parser.add('-d', '--data-dirname', dest="data_dirname", default="data")

    args = parser.parse_args()

    try:
        data_outputdir = os.path.join(
            dirname,
            "./" + args.data_dirname + "/" + os.environ["SLURM_JOB_ID"])
        os.makedirs(data_outputdir)
        logoutputpickle = open('./' + data_outputdir + '/output.pickle', 'wb')
        rewardsFile = open('./' + data_outputdir + '/rewards.yaml', 'w+')
    except KeyError:
        print("No SLURM_JOB_ID found")
        logoutputpickle = io.BytesIO()
        rewardsFile = io.StringIO()

    env_parameters = getParameters(args.env_filename)
    agent_parameters = getParameters(args.agent_filename)

    print(env_parameters)
    print(agent_parameters)
    for subAgent in agent_parameters["subAgentList"]:
        subAgent["parameters"]["simulator"] = env_parameters["environment"]
        subAgent["parameters"]["simulator"][
            "fullname"] = "aienvs.FactoryFloor.FactoryFloor.FactoryFloor"

    random.seed(env_parameters['seed'])
    maxSteps = env_parameters['max_steps']
    env = FactoryFloor(env_parameters['environment'])

    logging.info("Starting example MCTS agent")
    logoutput = io.StringIO("episode output log")

    obs = env.reset()

    complexAgent = createAgent(env.action_space, env.observation_space,
                               agent_parameters)

    experiment = Experiment(complexAgent, env, maxSteps, render=False)
    experiment.addListener(JsonLogger(logoutput))
    experiment.addListener(PickleLogger(logoutputpickle))
    rewards = experiment.run()
    #   statistics, confidence_ints = stats.describe(rewards), stats.bayes_mvs(rewards)
    logoutputpickle.close()

    yaml.dump(rewards, rewardsFile)
    rewardsFile.close()

    print("json output:", logoutput.getvalue())
    print("\n\nREWARD STATS: " + str(statistics) + " \nCONFIDENCE INTERVALS " +
          str(confidence_ints))