def german_dataset_age(name_prot=['age']): dataset_orig = GermanDataset(protected_attribute_names=name_prot, privileged_classes=[lambda x: x >= 25], features_to_drop=['personal_status', 'sex']) data, _ = dataset_orig.convert_to_dataframe() data.rename(columns={'credit': 'labels'}, inplace=True) data.to_csv("dataset/German_age.csv")
def german_dataset(name_prot=['sex']): dataset_orig = GermanDataset(protected_attribute_names=name_prot, features_to_drop=['personal_status', 'age']) privileged_groups = [{'sex': 1}] unprivileged_groups = [{'sex': 0}] data, _ = dataset_orig.convert_to_dataframe() data.rename(columns={'credit': 'labels'}, inplace=True) sensitive = data[name_prot] output = data['labels'] output.replace((1, 2), (0, 1), inplace=True) atribute = data.drop('labels', axis=1, inplace=False) atribute.drop(name_prot, axis=1, inplace=True) return data, atribute, sensitive, output, privileged_groups, unprivileged_groups
def german_dataset_sex(name_prot=['sex']): dataset_orig = GermanDataset(protected_attribute_names=name_prot, features_to_drop=['personal_status', 'age']) data, _ = dataset_orig.convert_to_dataframe() data.rename(columns={'credit': 'labels'}, inplace=True) data.to_csv("dataset/German_sex.csv")