示例#1
0
def has_nwchem_plugin():
    from aiida.common.pluginloader import get_plugin
    from aiida.common.exceptions import MissingPluginError
    from aiida.tools.dbexporters.tcod_plugins import BaseTcodtranslator

    try:
        get_plugin('tools.dbexporters.tcod_plugins', 'nwchem.nwcpymatgen')
    except MissingPluginError:
        return False

    return True
示例#2
0
def plugins(entry_point):
    from aiida.backends.utils import load_dbenv, is_dbenv_loaded
    if not is_dbenv_loaded():
        load_dbenv()
    from aiida.common.exceptions import LoadingPluginFailed, MissingPluginError
    from aiida.common.pluginloader import plugin_list, get_plugin

    if entry_point:
        try:
            plugin = get_plugin('workflows', entry_point)
        except (LoadingPluginFailed, MissingPluginError) as exception:
            click.echo("Error: {}".format(exception))
        else:
            click.echo(plugin.get_description())
    else:
        entry_points = sorted(plugin_list('workflows'))
        if entry_points:
            click.echo('Registered workflow entry points:')
            for entry_point in entry_points:
                click.echo("* {}".format(entry_point))
            click.echo(
                "\nPass the entry point of a workflow as an argument to display detailed information"
            )
        else:
            click.echo("# No workflows found")
示例#3
0
    def test_nwcpymatgen_translation(self):
        from aiida.tools.dbexporters.tcod \
            import translate_calculation_specific_values
        # from aiida.tools.dbexporters.tcod_plugins.nwcpymatgen \
        #     import NwcpymatgenTcodtranslator as NPT
        from aiida.orm.data.parameter import ParameterData
        from tcodexporter import FakeObject
        from aiida.common.pluginloader import get_plugin
        NPT = get_plugin('tools.dbexporters.tcod_plugins',
                         'nwchem.nwcpymatgen')

        calc = FakeObject({
            "out": {
                "output":
                ParameterData(
                    dict={
                        "basis_set": {
                            "H": {
                                "description": "6-31g",
                                "functions": "2",
                                "shells": "2",
                                "types": "2s"
                            },
                            "O": {
                                "description": "6-31g",
                                "functions": "9",
                                "shells": "5",
                                "types": "3s2p"
                            }
                        },
                        "corrections": {},
                        "energies": [-2057.99011937535],
                        "errors": [],
                        "frequencies": None,
                        "has_error": False,
                        "job_type": "NWChem SCF Module"
                    }),
                "job_info":
                ParameterData(
                    dict={
                        "0 permanent": ".",
                        "0 scratch": ".",
                        "argument  1": "aiida.in",
                        "compiled": "Sun_Dec_22_04:02:59_2013",
                        "data base": "./aiida.db",
                        "date": "Mon May 11 17:10:07 2015",
                        "ga revision": "10379",
                        "global": "200.0 Mbytes (distinct from heap & stack)",
                        "hardfail": "no",
                        "heap": "100.0 Mbytes",
                        "hostname": "theospc11",
                        "input": "aiida.in",
                        "nproc": "6",
                        "nwchem branch": "6.3",
                        "nwchem revision": "24277",
                        "prefix": "aiida.",
                        "program": "/usr/bin/nwchem",
                        "source": "/build/buildd/nwchem-6.3+r1",
                        "stack": "100.0 Mbytes",
                        "status": "startup",
                        "time left": "-1s",
                        "total": "400.0 Mbytes",
                        "verify": "yes",
                    })
            }
        })
        res = translate_calculation_specific_values(calc, NPT)
        self.assertEquals(
            res, {
                '_tcod_software_package': 'NWChem',
                '_tcod_software_package_version': '6.3',
                '_tcod_software_package_compilation_date':
                '2013-12-22T04:02:59',
                '_atom_type_symbol': ['H', 'O'],
                '_dft_atom_basisset': ['6-31g', '6-31g'],
                '_dft_atom_type_valence_configuration': ['2s', '3s2p'],
            })
示例#4
0
    def test_pw_translation(self):
        from aiida.tools.dbexporters.tcod \
            import translate_calculation_specific_values
        # from aiida.tools.dbexporters.tcod_plugins.pw \
        #     import PwTcodtranslator as PWT
        # from aiida.tools.dbexporters.tcod_plugins.cp \
        #     import CpTcodtranslator as CPT
        from aiida.orm.code import Code
        from aiida.orm.data.array import ArrayData
        from aiida.orm.data.array.kpoints import KpointsData
        from aiida.orm.data.parameter import ParameterData
        import numpy
        from aiida.common.pluginloader import get_plugin
        PWT = get_plugin('tools.dbexporters.tcod_plugins',
                         'quantumespresso.pw')
        CPT = get_plugin('tools.dbexporters.tcod_plugins',
                         'quantumespresso.cp')

        code = Code()
        code._set_attr('remote_exec_path', '/test')

        kpoints = KpointsData()
        kpoints.set_kpoints_mesh([2, 3, 4], offset=[0.25, 0.5, 0.75])

        def empty_list():
            return []

        calc = FakeObject({
            "inp": {
                "parameters": ParameterData(dict={}),
                "kpoints": kpoints,
                "code": code
            },
            "out": {
                "output_parameters": ParameterData(dict={})
            },
            "get_inputs": empty_list
        })

        res = translate_calculation_specific_values(calc, PWT)
        self.assertEquals(
            res, {
                '_dft_BZ_integration_grid_X': 2,
                '_dft_BZ_integration_grid_Y': 3,
                '_dft_BZ_integration_grid_Z': 4,
                '_dft_BZ_integration_grid_shift_X': 0.25,
                '_dft_BZ_integration_grid_shift_Y': 0.5,
                '_dft_BZ_integration_grid_shift_Z': 0.75,
                '_dft_pseudopotential_atom_type': [],
                '_dft_pseudopotential_type': [],
                '_dft_pseudopotential_type_other_name': [],
                '_tcod_software_package': 'Quantum ESPRESSO',
                '_tcod_software_executable_path': '/test',
            })

        calc = FakeObject({
            "inp": {
                "parameters":
                ParameterData(dict={
                    'SYSTEM': {
                        'ecutwfc': 40,
                        'occupations': 'smearing'
                    }
                })
            },
            "out": {
                "output_parameters":
                ParameterData(dict={
                    'number_of_electrons': 10,
                })
            },
            "get_inputs": empty_list
        })
        res = translate_calculation_specific_values(calc, PWT)
        self.assertEquals(
            res, {
                '_dft_cell_valence_electrons': 10,
                '_tcod_software_package': 'Quantum ESPRESSO',
                '_dft_BZ_integration_smearing_method': 'Gaussian',
                '_dft_pseudopotential_atom_type': [],
                '_dft_pseudopotential_type': [],
                '_dft_pseudopotential_type_other_name': [],
                '_dft_kinetic_energy_cutoff_EEX': 2176.910676048,
                '_dft_kinetic_energy_cutoff_charge_density': 2176.910676048,
                '_dft_kinetic_energy_cutoff_wavefunctions': 544.227669012,
            })

        calc = FakeObject({
            "inp": {
                "parameters": ParameterData(dict={})
            },
            "out": {
                "output_parameters": ParameterData(dict={
                    'energy_xc': 5,
                })
            },
            "get_inputs": empty_list
        })
        with self.assertRaises(ValueError):
            translate_calculation_specific_values(calc, PWT)

        calc = FakeObject({
            "inp": {
                "parameters": ParameterData(dict={})
            },
            "out": {
                "output_parameters":
                ParameterData(dict={
                    'energy_xc': 5,
                    'energy_xc_units': 'meV'
                })
            },
            "get_inputs": empty_list
        })
        with self.assertRaises(ValueError):
            translate_calculation_specific_values(calc, PWT)

        energies = {
            'energy': -3701.7004199449257,
            'energy_one_electron': -984.0078459766,
            'energy_xc': -706.6986753641559,
            'energy_ewald': -2822.6335103043157,
            'energy_hartree': 811.6396117001462,
            'fermi_energy': 10.25208617898623,
        }
        dct = energies
        for key in energies.keys():
            dct["{}_units".format(key)] = 'eV'
        calc = FakeObject({
            "inp": {
                "parameters":
                ParameterData(dict={'SYSTEM': {
                    'smearing': 'mp'
                }})
            },
            "out": {
                "output_parameters": ParameterData(dict=dct)
            },
            "get_inputs": empty_list
        })
        res = translate_calculation_specific_values(calc, PWT)
        self.assertEquals(
            res, {
                '_tcod_total_energy': energies['energy'],
                '_dft_1e_energy': energies['energy_one_electron'],
                '_dft_correlation_energy': energies['energy_xc'],
                '_dft_ewald_energy': energies['energy_ewald'],
                '_dft_hartree_energy': energies['energy_hartree'],
                '_dft_fermi_energy': energies['fermi_energy'],
                '_tcod_software_package': 'Quantum ESPRESSO',
                '_dft_BZ_integration_smearing_method': 'Methfessel-Paxton',
                '_dft_BZ_integration_MP_order': 1,
                '_dft_pseudopotential_atom_type': [],
                '_dft_pseudopotential_type': [],
                '_dft_pseudopotential_type_other_name': [],
            })
        dct = energies
        dct['number_of_electrons'] = 10
        for key in energies.keys():
            dct["{}_units".format(key)] = 'eV'
        calc = FakeObject({
            "inp": {
                "parameters":
                ParameterData(dict={'SYSTEM': {
                    'smearing': 'unknown-method'
                }})
            },
            "out": {
                "output_parameters": ParameterData(dict=dct)
            },
            "get_inputs": empty_list
        })
        res = translate_calculation_specific_values(calc, CPT)
        self.assertEquals(
            res, {
                '_dft_cell_valence_electrons': 10,
                '_tcod_software_package': 'Quantum ESPRESSO'
            })

        ad = ArrayData()
        ad.set_array("forces", numpy.array([[[1, 2, 3], [4, 5, 6]]]))
        calc = FakeObject({
            "inp": {
                "parameters":
                ParameterData(dict={'SYSTEM': {
                    'smearing': 'unknown-method'
                }})
            },
            "out": {
                "output_parameters": ParameterData(dict={}),
                "output_array": ad
            },
            "get_inputs": empty_list
        })
        res = translate_calculation_specific_values(calc, PWT)
        self.assertEquals(
            res,
            {
                '_tcod_software_package': 'Quantum ESPRESSO',
                '_dft_BZ_integration_smearing_method': 'other',
                '_dft_BZ_integration_smearing_method_other': 'unknown-method',
                '_dft_pseudopotential_atom_type': [],
                '_dft_pseudopotential_type': [],
                '_dft_pseudopotential_type_other_name': [],
                ## Residual forces are no longer produced, as they should
                ## be in the same CIF loop with coordinates -- to be
                ## implemented later, since it's not yet clear how.
                # '_tcod_atom_site_resid_force_Cartn_x': [1,4],
                # '_tcod_atom_site_resid_force_Cartn_y': [2,5],
                # '_tcod_atom_site_resid_force_Cartn_z': [3,6],
            })
示例#5
0
def _collect_tags(
        node,
        calc,
        parameters=None,
        dump_aiida_database=default_options['dump_aiida_database'],
        exclude_external_contents=default_options['exclude_external_contents'],
        gzip=default_options['gzip'],
        gzip_threshold=default_options['gzip_threshold']):
    """
    Retrieve metadata from attached calculation and pseudopotentials
    and prepare it to be saved in TCOD CIF.
    """
    from aiida.common.links import LinkType
    import os, json
    import aiida
    tags = {
        '_audit_creation_method': "AiiDA version {}".format(aiida.__version__)
    }

    # Recording the dictionaries (if any)

    if len(conforming_dictionaries):
        for postfix in ['name', 'version', 'location']:
            key = '_audit_conform_dict_{}'.format(postfix)
            if key not in tags:
                tags[key] = []

    for dictionary in conforming_dictionaries:
        tags['_audit_conform_dict_name'].append(dictionary['name'])
        tags['_audit_conform_dict_version'].append(dictionary['version'])
        tags['_audit_conform_dict_location'].append(dictionary['url'])

    # Collecting metadata from input files:

    calc_data = []
    if calc is not None:
        calc_data = _collect_calculation_data(calc)

    for tag in tcod_loops['_tcod_computation'] + tcod_loops['_tcod_file']:
        tags[tag] = []

    export_files = []

    sn = 1
    for step in calc_data:
        tags['_tcod_computation_step'].append(sn)
        tags['_tcod_computation_command'].append('cd {}; ./{}'.format(
            sn, aiida_executable_name))
        tags['_tcod_computation_reference_uuid'].append(step['uuid'])
        if 'env' in step:
            tags['_tcod_computation_environment'].append("\n".join(
                ["%s=%s" % (key, step['env'][key]) for key in step['env']]))
        else:
            tags['_tcod_computation_environment'].append('')
        if 'stdout' in step and step['stdout'] is not None:
            tags['_tcod_computation_stdout'].append(step['stdout'])
        else:
            tags['_tcod_computation_stdout'].append('')
        if 'stderr' in step and step['stderr'] is not None:
            tags['_tcod_computation_stderr'].append(step['stderr'])
        else:
            tags['_tcod_computation_stderr'].append('')

        export_files.append({
            'name': "{}{}".format(sn, os.sep),
            'type': 'folder'
        })

        for f in step['files']:
            f['name'] = os.path.join(str(sn), f['name'])
        export_files.extend(step['files'])

        sn = sn + 1

    # Creating importable AiiDA database dump in CIF tags

    if dump_aiida_database and node.is_stored:
        import json
        from aiida.common.exceptions import LicensingException
        from aiida.common.folders import SandboxFolder
        from aiida.orm.importexport import export_tree

        with SandboxFolder() as folder:
            try:
                export_tree([node.dbnode],
                            folder=folder,
                            silent=True,
                            allowed_licenses=['CC0'])
            except LicensingException as e:
                raise LicensingException(e.message + \
                                         ". Only CC0 license is accepted.")

            files = _collect_files(folder.abspath)
            with open(folder.get_abs_path('data.json')) as f:
                data = json.loads(f.read())
            md5_to_url = {}
            if exclude_external_contents:
                for pk in data['node_attributes']:
                    n = data['node_attributes'][pk]
                    if 'md5' in n.keys() and 'source' in n.keys() and \
                      'uri' in n['source'].keys():
                        md5_to_url[n['md5']] = n['source']['uri']

            for f in files:
                f['name'] = os.path.join('aiida', f['name'])
                if f['type'] == 'file' and f['md5'] in md5_to_url.keys():
                    f['uri'] = md5_to_url[f['md5']]

            export_files.extend(files)

    # Describing seen files in _tcod_file_* loop

    encodings = list()

    fn = 0
    for f in export_files:
        # ID and name
        tags['_tcod_file_id'].append(fn)
        tags['_tcod_file_name'].append(f['name'])

        # Checksums
        md5sum = None
        sha1sum = None
        if f['type'] == 'file':
            md5sum = f['md5']
            sha1sum = f['sha1']
        else:
            md5sum = '.'
            sha1sum = '.'
        tags['_tcod_file_md5sum'].append(md5sum)
        tags['_tcod_file_sha1sum'].append(sha1sum)

        # Content, encoding and URI
        contents = '?'
        encoding = None
        if 'uri' in f.keys():
            contents = '.'
            tags['_tcod_file_URI'].append(f['uri'])
        else:
            tags['_tcod_file_URI'].append('?')
            if f['type'] == 'file':
                contents,encoding = \
                    cif_encode_contents(f['contents'],
                                        gzip=gzip,
                                        gzip_threshold=gzip_threshold)
            else:
                contents = '.'

        if encoding is None:
            encoding = '.'
        elif encoding not in encodings:
            encodings.append(encoding)
        tags['_tcod_file_contents'].append(contents)
        tags['_tcod_file_content_encoding'].append(encoding)

        # Role
        role = '?'
        if 'role' in f.keys():
            role = f['role']
        tags['_tcod_file_role'].append(role)

        fn = fn + 1

    # Describing the encodings

    if encodings:
        for tag in tcod_loops['_tcod_content_encoding']:
            tags[tag] = []
    for encoding in encodings:
        layers = encoding.split('+')
        for i in range(0, len(layers)):
            tags['_tcod_content_encoding_id'].append(encoding)
            tags['_tcod_content_encoding_layer_id'].append(i + 1)
            tags['_tcod_content_encoding_layer_type'].append(layers[i])

    # Describing Brillouin zone (if used)

    if calc is not None:
        from aiida.orm.data.array.kpoints import KpointsData
        kpoints_list = calc.get_inputs(KpointsData, link_type=LinkType.INPUT)
        # TODO: stop if more than one KpointsData is used?
        if len(kpoints_list) == 1:
            kpoints = kpoints_list[0]
            density, shift = kpoints.get_kpoints_mesh()
            tags['_dft_BZ_integration_grid_X'] = density[0]
            tags['_dft_BZ_integration_grid_Y'] = density[1]
            tags['_dft_BZ_integration_grid_Z'] = density[2]
            tags['_dft_BZ_integration_grid_shift_X'] = shift[0]
            tags['_dft_BZ_integration_grid_shift_Y'] = shift[1]
            tags['_dft_BZ_integration_grid_shift_Z'] = shift[2]

    from aiida.common.exceptions import MultipleObjectsError
    from aiida.common.pluginloader import all_plugins, get_plugin

    category = 'tools.dbexporters.tcod_plugins'
    plugins = list()

    if calc is not None:
        for entry_point in all_plugins(category):
            plugin = get_plugin(category, entry_point)
            if calc._plugin_type_string.endswith(plugin._plugin_type_string +
                                                 '.'):
                plugins.append(plugin)

    if len(plugins) > 1:
        raise MultipleObjectsError('more than one plugin found for {}'.format(
            calc._plugin_type_string))

    if len(plugins) == 1:
        plugin = plugins[0]
        translated_tags = translate_calculation_specific_values(calc, plugin)
        tags.update(translated_tags)

    return tags