示例#1
0
from aiida_fleur.calculation.fleur import FleurCalculation
from aiida_fleur.tools.common_fleur_wf import get_inputs_fleur, get_inputs_inpgen

__copyright__ = (u"Copyright (c), 2016, Forschungszentrum Jülich GmbH, "
                 "IAS-1/PGI-1, Germany. All rights reserved.")
__license__ = "MIT license, see LICENSE.txt file"
__version__ = "0.27"
__contributors__ = "Jens Broeder"

RemoteData = DataFactory('remote')
StructureData = DataFactory('structure')
ParameterData = DataFactory('parameter')
#FleurInpData = DataFactory('fleurinp.fleurinp')
FleurInpData = DataFactory('fleur.fleurinp')
FleurProcess = FleurCalculation.process()
FleurinpProcess = FleurinputgenCalculation.process()


class fleur_scf_wc(WorkChain):
    """
    This workflow converges a FLEUR calculation (SCF).
    It converges the charge density and optional the total energy
    
    Two paths are possible: 
    
    (1) Start from a structure and run the inpgen first
    (2) Start from a Fleur calculation, with optional remoteData
      
    :Params: wf_parameters: parameterData node,
    :Params: structure : structureData node,
    :Params: calc_parameters: parameterData node,
示例#2
0
        }
    })

#elements = list(s.get_symbols_set())

## For remote codes, it is not necessary to manually set the computer,
## since it is set automatically by new_calc
#computer = code.get_remote_computer()
#calc = code.new_calc(computer=computer)

calc = code.new_calc()
#calc = CalculationFactory('fleur.inpgen')
print calc, type(calc)
calc.label = "Test Fleur inpgen"
calc.description = "Test calculation of the Fleur input generator"
calc.set_max_wallclock_seconds(300)  # 5 min
# Valid only for Slurm and PBS (using default values for the
# number_cpus_per_machine), change for SGE-like schedulers
calc.set_resources({"num_machines": 1})
calc.set_withmpi(False)
calc.use_code(code)
## Otherwise, to specify a given # of cpus per machine, uncomment the following:
# calc.set_resources({"num_machines": 1, "num_mpiprocs_per_machine": 8})
calc.set_resources({"tot_num_mpiprocs": 1})

#calc.set_custom_scheduler_commands("#SBATCH --account=ch3")
calc.set_custom_scheduler_commands("#BSUB -P jara0043 \n#BSUB -x")

if queue is not None:
    calc.set_queue_name(queue)
示例#3
0
            'gmaxxc': 12.5,
            'gmax': 15.0
        },
        'kpt': {
            'div1': 17,
            'div2': 17,
            'div3': 17,
            'tkb': 0.0005
        }
    })

# now run an inputgen calculation:

code = Code.get_from_string(codename)
computer = Computer.objects.get(computer_name)
JobCalc = FleurinputgenCalculation.process()

attrs = {
    'max_wallclock_seconds': 180,
    'resources': {
        'num_machines': 1
    },
    'withmpi': False,
    #'computer': computer
}
inp = {'structure': s, 'parameters': parameters, 'code': code}

f = run(JobCalc, _options=attrs, **inp)
fleurinp = f['fleurinpData']
fleurinpd = load_node(fleurinp.pk)
structures = [Fe_structrure, Ni_structrure, Co_structrure]

# create a parameters Dict
parameters = Dict(dict={
    'comp': {
        'kmax': 3.85
        },
    'kpt': {
        'div1': 4,
        'div2' : 4,
        'div3' : 1
        }})

# options

options = {'resources' : {"num_machines": 1, "num_mpiprocs_per_machine" : 1}, 'withmpi' : False}

for structure in structures:
    # assemble inputs in a single dictionary
    inputs = FleurinputgenCalculation.get_builder()
    inputs.parameters = parameters
    inputs.code = inpgen_code
    inputs.structure = structure
    inputs.metadata.options = options

    # submit
    inpgen_pk = submit(FleurinputgenCalculation, **inputs)
    print('The PK of submitted inpgen job is {} for {} structure'.format(res_pk, structure.formula)

        }
    })
#s=load_node(5814)
#elements = list(s.get_symbols_set())

## For remote codes, it is not necessary to manually set the computer,
## since it is set automatically by new_calc
#computer = code.get_remote_computer()
#calc = code.new_calc(computer=computer)

calc = code.new_calc()
#calc = CalculationFactory('fleur.inpgen')
print(calc, type(calc))
calc.label = 'Test Fleur inpgen'
calc.description = 'Test calculation of the Fleur input generator'
calc.set_max_wallclock_seconds(300)  # 5 min
# Valid only for Slurm and PBS (using default values for the
# number_cpus_per_machine), change for SGE-like schedulers
calc.set_resources({'num_machines': 1})
calc.set_withmpi(False)
calc.use_code(code)
## Otherwise, to specify a given # of cpus per machine, uncomment the following:
calc.set_resources({'num_machines': 1, 'num_mpiprocs_per_machine': 8})
#calc.set_resources({"tot_num_mpiprocs" : 1})

#calc.set_custom_scheduler_commands("#SBATCH --account=ch3")
#calc.set_custom_scheduler_commands("#BSUB -P jara0043 \n#BSUB -x")

if queue is not None:
    calc.set_queue_name(queue)
示例#6
0
        'comp': {
            'kmax': 3.5,
            'gmax': 2.9,
        },
        'kpt': {
            'nkpt': 200,
        }
    })
#s=load_node(5814)
#elements = list(s.get_symbols_set())

## For remote codes, it is not necessary to manually set the computer,
## since it is set automatically by new_calc
#computer = code.get_remote_computer()
#calc = code.new_calc(computer=computer)
calc = FleurinputgenCalculation()
#print calc
#calc.label = 'Test inpgen run'
print('set label {}'.format(calc.label))
JobCalc = calc.process()
print(JobCalc.calc)
print(JobCalc)
#print(JobCalc.label)
#JobCalc.calc.label = 'Test inpgen run'
#print(JobCalc.calc)
#print(JobCalc.label)
label = 'Test inpgen run'
description = 'Test inpgen run on W'
label = 'fleur_scf_wc inpgen on W'
description = '|fleur_scf_wc| inpgen on W, pbc(True, True, True)'