示例#1
0
    def check_failure(self):
        """
        Throws an exit code if scf failed
        """
        try:
            scf_wc = self.ctx.scf_res
        except AttributeError:
            message = 'ERROR: Something went wrong I do not have new atom positions calculation'
            self.control_end_wc(message)
            return self.exit_codes.ERROR_NO_SCF_OUTPUT

        if not scf_wc.is_finished_ok:
            exit_statuses = FleurScfWorkChain.get_exit_statuses(
                ['ERROR_FLEUR_CALCULATION_FAILED'])
            if scf_wc.exit_status == exit_statuses[0]:
                fleur_calc = load_node(
                    scf_wc.outputs.output_scf_wc_para.get_dict()
                    ['last_calc_uuid'])
                if fleur_calc.exit_status == FleurCalc.get_exit_statuses(
                    ['ERROR_VACUUM_SPILL_RELAX'])[0]:
                    self.control_end_wc(
                        'ERROR: Failed due to atom and vacuum overlap')
                    return self.exit_codes.ERROR_VACUUM_SPILL_RELAX
                elif fleur_calc.exit_status == FleurCalc.get_exit_statuses(
                    ['ERROR_MT_RADII_RELAX'])[0]:
                    self.control_end_wc('ERROR: Failed due to MT overlap')
                    return self.exit_codes.ERROR_MT_RADII_RELAX
            return self.exit_codes.ERROR_SCF_FAILED
    def test_fleur_scf_wc_init(self):
        """
        Test the interface of the scf workchain
        """
        from aiida_fleur.workflows.scf import FleurScfWorkChain

        builder = FleurScfWorkChain.get_builder()
def test_fleur_scf_non_convergence(run_with_cache, clear_database,
                                   fleur_local_code, inpgen_local_code,
                                   generate_structure2, clear_spec):
    """
    Full regression test of FleurScfWorkchain starting with a crystal structure and parameters
    Check if calc parameters are given through, check if wf default parameters are updated
    """
    # prepare input nodes and dicts
    options = {
        'resources': {
            'num_machines': 1,
            'num_mpiprocs_per_machine': 1
        },
        'max_wallclock_seconds': 5 * 60,
        'withmpi': False,
        'custom_scheduler_commands': ''
    }
    FleurCode = fleur_local_code
    InpgenCode = inpgen_local_code

    wf_parameters = {'add_comp_para': {'serial': True}, 'itmax_per_run': 3}

    calc_parameters = {
        'atom': {
            'element': 'Si',
            'rmt': 2.1,
            'jri': 981,
            'lmax': 8,
            'lnonsph': 6
        },
        'comp': {
            'kmax': 3.4
        },
        'kpt': {
            'div1': 10,
            'div2': 10,
            'div3': 10,
            'tkb': 0.0005
        }
    }

    # create process builder to set parameters
    builder = FleurScfWorkChain.get_builder()
    builder.metadata.description = 'Simple Fleur SCF test for Si bulk which does not converge'
    builder.metadata.label = 'FleurSCF_test_Si_bulk'
    builder.structure = generate_structure2().store()
    builder.options = Dict(dict=options).store()
    builder.calc_parameters = Dict(dict=calc_parameters).store()
    builder.wf_parameters = Dict(dict=wf_parameters).store()
    builder.fleur = FleurCode.store()
    builder.inpgen = InpgenCode.store()
    print(builder)

    # now run scf with cache fixture
    out, node = run_with_cache(builder)
    print(out)
    print(node)
    print(get_workchain_report(node, 'REPORT'))
    assert not node.is_finished_ok
    assert node.exit_status == 362
def test_fleur_scf_fleurinp_Si(
        #run_with_cache,
        with_export_cache,
        fleur_local_code,
        create_fleurinp,
        clear_database,
        clear_spec):
    """
    full example using scf workflow with just a fleurinp data as input.
    Several fleur runs needed till convergence
    """
    options = {
        'resources': {
            'num_machines': 1,
            'num_mpiprocs_per_machine': 1
        },
        'max_wallclock_seconds': 5 * 60,
        'withmpi': False,
        'custom_scheduler_commands': ''
    }

    FleurCode = fleur_local_code

    # create process builder to set parameters
    builder = FleurScfWorkChain.get_builder()
    builder.metadata.description = 'Simple Fleur SCF test for Si bulk with fleurinp data given'
    builder.metadata.label = 'FleurSCF_test_Si_bulk'
    builder.fleurinp = create_fleurinp(TEST_INP_XML_PATH).store()
    builder.options = Dict(dict=options).store()
    builder.fleur = FleurCode
    #print(builder)

    # now run calculation
    #run_with_cache(builder)
    data_dir_path = os.path.join(
        aiida_path, '../tests/workflows/caches/fleur_scf_fleurinp_Si.tar.gz')
    with with_export_cache(data_dir_abspath=data_dir_path):
        out, node = run_get_node(builder)
    #print(out)
    #print(node)

    print(get_workchain_report(node, 'REPORT'))

    #assert node.is_finished_ok
    # check output
    n = out['output_scf_wc_para']
    n = n.get_dict()

    print(get_calcjob_report(load_node(n['last_calc_uuid'])))

    #print(n)
    assert abs(n.get('distance_charge') - 9.8993e-06) < 2.0e-6
    assert n.get('errors') == []
示例#5
0
        'commandline_options': ['-wtime', '30'],
        'blaha': ['bla']
    })

wf_para = Dict(
    dict={
        'fleur_runmax': 4,
        'density_criterion': 0.000001,  #})
        'queue_name': 'th123_node',
        'resources': {
            'num_machines': 1,
            'num_mpiprocs_per_machine': 12
        },
        'walltime_sec': 10 * 60
    })

res = FleurScfWorkChain.run(
    wf_parameters=wf_para,
    structure=s,
    #calc_parameters=parameters,
    inpgen=code,
    fleur=code2)  #, settings=settings)#
'''
code = Code.get_from_string('inpgen_mac_25_10_2016')
code2 = Code.get_from_string('fleur_mac_v0_27')
computer = Computer.get('local_mac')
wf_para = ParameterData(dict={'fleur_runmax' : 4, 'density_criterion' : 0.0000001})#, 'queue' : 'th1'})
res = run(fleur_convergence, wf_parameters=wf_para, structure=load_node(24422),
          calc_parameters=load_node(24507), inpgen = code, fleur=code2)
'''
示例#6
0
def test_fleur_scf_structure_Si(run_with_cache, clear_database,
                                fleur_local_code, inpgen_local_code,
                                generate_structure2, clear_spec):
    """
    Full regression test of FleurScfWorkchain starting with a crystal structure and parameters
    Check if calc parameters are given through, check if wf default parameters are updated
    """
    # prepare input nodes and dicts
    options = {
        'resources': {
            'num_machines': 1,
            'num_mpiprocs_per_machine': 1
        },
        'max_wallclock_seconds': 5 * 60,
        'withmpi': False,
        'custom_scheduler_commands': ''
    }
    FleurCode = fleur_local_code
    InpgenCode = inpgen_local_code

    wf_parameters = {'serial': True, 'itmax_per_run': 30}

    calc_parameters = {
        'atom': {
            'element': 'Si',
            'rmt': 2.1,
            'jri': 981,
            'lmax': 8,
            'lnonsph': 6
        },
        'comp': {
            'kmax': 3.4
        },
        'kpt': {
            'div1': 10,
            'div2': 10,
            'div3': 10,
            'tkb': 0.0005
        }
    }

    #calc_parameters = {'atom': {'element': "W", 'rmt': 2.3, 'jri': 981, 'lmax': 10,
    #                   'lnonsph': 6, 'econfig': '[Kr] 4d10 4f14 | 5s2 5p6 6s2 5d4', 'lo': '5s 5p'},
    #                   'comp': {'kmax': 3.5},
    #                    'kpt': {'div1': 15, 'div2': 15, 'div3': 15, 'tkb': 0.0005}}

    # create process builder to set parameters
    builder = FleurScfWorkChain.get_builder()
    builder.metadata.description = 'Simple Fleur SCF test for Si bulk with structure, calc para and wf para given'
    builder.metadata.label = 'FleurSCF_test_Si_bulk'
    builder.structure = generate_structure2().store()
    builder.options = Dict(dict=options).store()
    builder.calc_parameters = Dict(dict=calc_parameters).store()
    builder.wf_parameters = Dict(dict=wf_parameters).store()
    builder.fleur = FleurCode.store()
    builder.inpgen = InpgenCode.store()
    print(builder)

    # now run scf with cache fixture
    out, node = run_with_cache(builder)
    #out, node = run_get_node(builder)
    print(out)
    print(node)

    assert node.is_finished_ok
    # check output
    n = out['output_scf_wc_para']
    n = n.get_dict()
    print(n)
    assert abs(n.get('distance_charge') - 8.0987e-06) < 10**-9
    assert n.get('errors') == []
示例#7
0
def test_fleur_scf_validation_wrong_inputs(run_with_cache, mock_code_factory,
                                           create_fleurinp,
                                           generate_structure2, clear_spec,
                                           clear_database):
    """
    Test the validation behavior of FleurScfWorkchain if wrong input is provided it should throw
    an exitcode and not start a Fleur run or crash
    """
    #from aiida.engine import run_get_node

    #clear_spec()

    # prepare input nodes and dicts
    options = {
        'resources': {
            'num_machines': 1,
            'num_mpiprocs_per_machine': 1
        },
        'max_wallclock_seconds': 5 * 60,
        'withmpi': False,
        'custom_scheduler_commands': ''
    }
    options = Dict(dict=options).store()

    FleurCode = mock_code_factory(
        label='fleur',
        data_dir_abspath=os.path.join(
            os.path.dirname(os.path.abspath(__file__)), 'calc_data_dir/'),
        entry_point=CALC_ENTRY_POINT,
        ignore_files=[
            'cdnc', 'out', 'FleurInputSchema.xsd', 'cdn.hdf', 'usage.json',
            'cdn??'
        ])
    InpgenCode = mock_code_factory(
        label='inpgen',
        data_dir_abspath=os.path.join(
            os.path.dirname(os.path.abspath(__file__)), 'calc_data_dir/'),
        entry_point=CALC2_ENTRY_POINT,
        ignore_files=['_aiidasubmit.sh', 'FleurInputSchema.xsd'])

    calc_parameters = Dict(dict={})
    calc_parameters.store()
    structure = generate_structure2()
    structure.store()
    fleurinp = create_fleurinp(TEST_INP_XML_PATH)
    fleurinp.store()

    ################
    # Create builders

    # 1. create builder structure and fleurinp
    builder_struc_fleurinp = FleurScfWorkChain.get_builder()
    builder_struc_fleurinp.structure = structure
    builder_struc_fleurinp.fleurinp = fleurinp
    builder_struc_fleurinp.options = options
    builder_struc_fleurinp.fleur = FleurCode
    builder_struc_fleurinp.inpgen = InpgenCode

    # 2. create builder structure no inpgen given
    builder_no_inpgen = FleurScfWorkChain.get_builder()
    builder_no_inpgen.structure = structure
    builder_no_inpgen.options = options
    builder_no_inpgen.fleur = FleurCode

    # 3. create builder no fleurcode given
    builder_no_fleur = FleurScfWorkChain.get_builder()
    builder_no_fleur.structure = structure
    builder_no_fleur.options = options
    builder_no_fleur.inpgen = InpgenCode

    # 4. wrong code given (here we swap)
    builder_wrong_code = FleurScfWorkChain.get_builder()
    builder_wrong_code.structure = structure
    builder_wrong_code.options = options
    builder_wrong_code.inpgen = FleurCode
    builder_wrong_code.fleur = InpgenCode

    # 5. create builder fleurinp and calc_parameter given

    builder_calc_para_fleurinp = FleurScfWorkChain.get_builder()
    builder_calc_para_fleurinp.calc_parameters = calc_parameters
    builder_calc_para_fleurinp.fleurinp = fleurinp
    builder_calc_para_fleurinp.options = options
    builder_calc_para_fleurinp.fleur = FleurCode
    builder_calc_para_fleurinp.inpgen = InpgenCode

    ###################
    # now run the buidlers all should fail early with exit codes

    # 1. structure and fleurinp given
    out, node = run_get_node(builder_struc_fleurinp)
    assert out == {}
    assert node.is_finished
    assert not node.is_finished_ok
    assert node.exit_status == 231

    # 2. structure and no inpgen given
    out, node = run_get_node(builder_no_inpgen)
    assert out == {}
    assert node.is_finished
    assert not node.is_finished_ok
    assert node.exit_status == 231

    # 3. no fleur code given, since not optional input,
    # caught by aiida during creation
    with pytest.raises(ValueError) as e_info:
        out, node = run_get_node(builder_no_fleur)

    # 4. wrong code type given
    out, node = run_get_node(builder_wrong_code)
    assert out == {}
    assert node.is_finished
    assert not node.is_finished_ok
    assert node.exit_status == 233

    # 5. calc_parameter and fleurinp given
    out, node = run_get_node(builder_calc_para_fleurinp)
    assert out == {}
    assert node.is_finished
    assert not node.is_finished_ok
    assert node.exit_status == 231
示例#8
0
def test_fleur_scf_fleurinp_Si_modifications(
        #run_with_cache,
        with_export_cache,
        #mock_code_factory,
        #aiida_local_code_factory,
        fleur_local_code,
        create_fleurinp,
        clear_database,
        clear_spec):
    """
    Full regression test of FleurScfWorkchain starting with a fleurinp data,
    but adjusting the Fleur input file before the fleur run.
    """

    wf_parameters = {
        'fleur_runmax': 4,
        'density_converged': 0.0002,
        'energy_converged': 0.002,
        'force_converged': 0.002,
        'mode': 'density',  # 'density', 'energy' or 'force'
        'serial': True,
        'itmax_per_run': 30,
        'force_dict': {
            'qfix': 2,
            'forcealpha': 0.5,
            'forcemix': 'BFGS'
        },
        'inpxml_changes': [('set_inpchanges', {
            'change_dict': {
                'Kmax': 3.8
            }
        })],
    }

    options = {
        'resources': {
            'num_machines': 1,
            'num_mpiprocs_per_machine': 1
        },
        'max_wallclock_seconds': 5 * 60,
        'withmpi': False,
        'custom_scheduler_commands': ''
    }

    FleurCode = fleur_local_code

    # create process builder to set parameters
    builder = FleurScfWorkChain.get_builder()
    builder.metadata.description = 'Simple Fleur SCF test for Si bulk with fleurinp data given and mod request'
    builder.metadata.label = 'FleurSCF_test_Si_bulk_mod'
    builder.fleurinp = create_fleurinp(TEST_INP_XML_PATH).store()
    builder.options = Dict(dict=options).store()
    builder.wf_parameters = Dict(dict=wf_parameters).store()
    builder.fleur = FleurCode
    #print(builder)

    # now run calculation
    #run_with_cache(builder)
    data_dir_path = os.path.join(
        aiida_path,
        '../tests/workflows/caches/fleur_scf_fleurinp_Si_mod.tar.gz')

    with with_export_cache(data_dir_abspath=data_dir_path):
        out, node = run_get_node(builder)
    print(out)
    #print(node)
    assert node.is_finished_ok
    # check output
    n = out['output_scf_wc_para']
    n = n.get_dict()
    lasto = out['last_fleur_calc_output']
    calc = lasto.get_incoming().all()[0].node
    print(calc)
    print(calc.get_cache_source())
    lasto = lasto.get_dict()

    print(n)
    #get kmax and minDistance
    assert abs(n.get('distance_charge') - 0.0001671267) < 10**-9
    assert n.get('errors') == []
    assert lasto['kmax'] == 3.8
示例#9
0
    def return_results(self):
        """
        return the results of the relaxed DFT+U calculations (scf workchains)
        """
        distancelist = []
        t_energylist = []
        failed_configs = []
        non_converged_configs = []
        configs_list = []
        outnodedict = {}

        e_u = 'htr'
        dis_u = 'me/bohr^3'
        for index, config in enumerate(self.ctx.fixed_configurations):
            if f'Relaxed_{index}' in self.ctx:
                calc = self.ctx[f'Relaxed_{index}']
            else:
                message = (
                    'One SCF workflow was not run because the fixed calculation failed: {}'.format(f'Relaxed_{index}'))
                self.ctx.warnings.append(message)
                self.ctx.successful = False
                failed_configs.append(index)
                continue

            if not calc.is_finished_ok:
                message = ('One SCF workflow was not successful: {}'.format(f'Relaxed_{index}'))
                self.ctx.warnings.append(message)
                self.ctx.successful = False
                #We dont skip simply non-converged calculations
                #because we want to try to exctract the total_energy
                if calc.exit_status not in FleurScfWorkChain.get_exit_statuses(['ERROR_DID_NOT_CONVERGE']):
                    failed_configs.append(index)
                    continue
                non_converged_configs.append(index)

            try:
                outputnode_scf = calc.outputs.output_scf_wc_para
            except KeyError:
                message = ('One SCF workflow failed, no scf output node: {}.'
                           ' I skip this one.'.format(f'Relaxed_{index}'))
                self.ctx.errors.append(message)
                self.ctx.successful = False
                failed_configs.append(index)
                continue

            try:
                fleurinp_scf = calc.outputs.fleurinp
            except KeyError:
                message = ('One SCF workflow failed, no fleurinp output node: {}.'
                           ' I skip this one.'.format(f'Relaxed_{index}'))
                self.ctx.errors.append(message)
                self.ctx.successful = False
                failed_configs.append(index)
                continue

            # we loose the connection of the failed scf here.
            # link labels cannot contain '.'
            link_label = f'configuration_{index}'
            fleurinp_label = f'fleurinp_{index}'
            outnodedict[link_label] = outputnode_scf
            outnodedict[fleurinp_label] = fleurinp_scf

            outpara = outputnode_scf.get_dict()

            t_e = outpara.get('total_energy', float('nan'))
            e_u = outpara.get('total_energy_units', 'htr')
            dis = outpara.get('distance_charge', float('nan'))
            dis_u = outpara.get('distance_charge_units', 'me/bohr^3')
            t_energylist.append(t_e)
            distancelist.append(dis)
            configs_list.append(index)

        out = {
            'workflow_name': self.__class__.__name__,
            'workflow_version': self._workflowversion,
            'configurations': self.ctx.fixed_configurations,
            'total_energy': t_energylist,
            'total_energy_units': e_u,
            'distance_charge': distancelist,
            'distance_charge_units': dis_u,
            'successful_configs': configs_list,
            'non_converged_configs': non_converged_configs,
            'failed_configs': failed_configs,
            'info': self.ctx.info,
            'warnings': self.ctx.warnings,
            'errors': self.ctx.errors
        }

        if self.ctx.successful:
            self.report('Done, Orbital occupation control calculation complete')
        elif len(t_energylist) != 0:
            self.report('Done, but something went wrong.... Probably some individual calculation failed or'
                        ' a scf-cycle did not reach the desired distance.')
        else:
            self.report('Done, but something went wrong.... All Calculations failed. Probably something is'
                        ' wrong in your setup')

        outnode = Dict(dict=out)
        outnodedict['results_node'] = outnode

        # create links between all these nodes...
        outputnode_dict = create_orbcontrol_result_node(**outnodedict)
        outputnode = outputnode_dict.get('output_orbcontrol_wc_para')
        outputnode.label = 'output_orbcontrol_wc_para'
        outputnode.description = (
            'Contains orbital occupation control results and information of an FleurOrbControlWorkChain run.')

        returndict = {}
        returndict['output_orbcontrol_wc_para'] = outputnode

        outputscf = outputnode_dict.get('output_orbcontrol_wc_gs_scf', None)
        if outputscf:
            outputscf.label = 'output_orbcontrol_wc_gs_scf'
            outputscf.description = ('SCF output from the run with the lowest total '
                                     'energy extracted from FleurOrbControlWorkChain')

            returndict['output_orbcontrol_wc_gs_scf'] = outputscf

        outputfleurinp = outputnode_dict.get('output_orbcontrol_wc_gs_fleurinp', None)
        if outputscf:
            outputscf.label = 'output_orbcontrol_wc_gs_fleurinp'
            outputscf.description = ('Fleurinp from the scf run with the lowest total '
                                     'energy extracted from FleurOrbControlWorkChain')

            returndict['output_orbcontrol_wc_gs_fleurinp'] = outputfleurinp

        # create link to workchain node
        for link_name, node in returndict.items():
            self.out(link_name, node)

        if len(t_energylist) == 0:
            return self.exit_codes.ERROR_ALL_CONFIGS_FAILED
        elif not self.ctx.successful:
            return self.exit_codes.ERROR_SOME_CONFIGS_FAILED
示例#10
0
ParameterData = DataFactory('parameter')
KpointsData = DataFactory('array.kpoints')
#FleurinpData = DataFactory('fleurinp.fleurinp')
FleurinpData = DataFactory('fleur.fleurinp')

###############################
# Set your values here
codename = 'inpgen_iff@local_iff'  #'inpgen_mac_30_11_2016@local_mac'
codename2 = 'fleur_iff@local_iff'  #'fleur_mac_v0_27@local_mac'
###############################

code = Code.get_from_string(codename)
code2 = Code.get_from_string(codename2)

wf_para = Dict(
    dict={
        'relax_runmax': 4,
        'density_criterion': 0.0000002,
        'energy_criterion': 0.0005,
        'converge_energy': True,
        'converge_density': True
    })
fleurinp = load_node(1339)
remote = load_node(1353)
wf_para = load_node(1333)

res = FleurScfWorkChain.run(wf_parameters=wf_para,
                            fleurinp=fleurinp,
                            remote_data=remote,
                            fleur=code2)