示例#1
0
def myAirfoilFunctionBoxWing(Epsilon, LEPoint, ChordFunct, ChordFactor,
                             DihedralFunct, TwistFunct):
    # Defines the variation of cross section as a function of Epsilon

    AirfoilChordLength = (ChordFactor*ChordFunct(Epsilon)) / \
        np.cos(np.radians(TwistFunct(Epsilon)))

    SmoothingPasses = 1

    Camber1 = 5.0
    Camber2 = -5.0
    Transition1 = 0.45
    Transition2 = 0.55

    # Known values of dihedral at start, transition and end locations
    EpsArray = np.array([0, Transition1, Transition2, 1])
    CamberArray = np.array([Camber1, Camber1, Camber2, Camber2])

    Camber = np.interp(Epsilon, EpsArray, CamberArray)
    prof = str(int(round(Camber))) + '310'

    Af = primitives.Airfoil(LEPoint,
                            AirfoilChordLength,
                            DihedralFunct(Epsilon),
                            TwistFunct(Epsilon),
                            Naca4Profile=prof)
    return Af
示例#2
0
def SimpleAirfoilFunction(Epsilon, LEPoint, ChordFunct, ChordFactor,
                              DihedralFunct, TwistFunct):
    """constant cross section with Epsilon"""
    AfChord = ChordFunct(Epsilon) * ChordFactor
    Af = primitives.Airfoil(LEPoint, ChordLength=AfChord,
                            Rotation=DihedralFunct(Epsilon),
                            Twist=TwistFunct(Epsilon),
                            Naca4Profile='0012')
    return Af
def myAirfoilFunctionAirliner(Epsilon, LEPoint, ChordFunct, ChordFactor,
                              DihedralFunct, TwistFunct):
    """Defines the variation of cross section as a function of Epsilon"""
    AfChord = ((ChordFactor*ChordFunct(Epsilon)) /
               np.cos(np.radians(TwistFunct(Epsilon))))
    Af = primitives.Airfoil(LEPoint, ChordLength=AfChord,
                            Rotation=DihedralFunct(Epsilon),
                            Twist=TwistFunct(Epsilon),
                            CRMProfile=True, CRM_Epsilon=Epsilon)
    return Af
示例#4
0
def myAirfoilFunctionTP(Epsilon, LEPoint, ChordFunct, ChordFactor,
                        DihedralFunct, TwistFunct):
    """Defines the variation of cross section as a function of Epsilon"""

    AirfoilChordLength = (ChordFactor * ChordFunct(Epsilon) /
                          np.cos(np.radians(TwistFunct(Epsilon))))

    AirfoilSeligName = 'sc20010'

    #    TODO : SmoothingPasses = 3
    Af = primitives.Airfoil(LEPoint,
                            ChordLength=AirfoilChordLength,
                            Rotation=DihedralFunct(Epsilon),
                            Twist=TwistFunct(Epsilon),
                            SeligProfile=AirfoilSeligName)
    return Af
    
    # ==============================================================================
    # Example: airfoil from Selig-formatted coordinate file. Leading edge point
    # in origin, unit chord along x axis, no rotation around the x or y axes.
    # Coordinates for Drela DAE11 low Reynolds number section, two smoothing
    # iterations.
    # ==============================================================================
    LEPoint = [0., 0., 0.]
    ChordLength = 1
    Rotation = 0
    Twist = 0
    AirfoilSeligName = 'dae11'
    
    
    # SmoothingPasses = 1   #TODO
    
    # Instantiate class to set up a generic airfoil with these basic parameters
    Af = primitives.Airfoil(LEPoint, ChordLength, Rotation, Twist,
                            SeligProfile=AirfoilSeligName)
   
    
    display.DisplayShape(Af.Curve, update=True)
    display.DisplayShape(Af.ChordLine, update=True, color='black')
    start_display()
    
    # If using interactive mode i.e. ipython, Airfoil can be removed with:
#    display.Context.Erase(Af1_disp.GetObject().GetHandle())
#    Af1.Curve.GetObject().Delete()   # Not sure if this truly collects the garbage yet
#    
#    # Or Clear the display:
#    display.EraseAll()