def _pickle_dag_and_save_pickle_id_for_versioned(self, dag, session): dp = DagPickle(dag=dag) # First step: we need pickle id, so we save none and "reserve" pickle id dag.last_pickled = timezone.utcnow() dp.pickle = None session.add(dp) session.commit() # Second step: now we have pickle_id , we can add it to Operator config # dag_pickle_id used for Versioned Dag via TaskInstance.task_executor <- Operator.task_executor dag.pickle_id = dp.id for op in dag.tasks: if op.executor_config is None: op.executor_config = {} op.executor_config["DatabandExecutor"] = { "dbnd_driver_dump": str(self.run.run_executor.driver_dump), "dag_pickle_id": dag.pickle_id, "remove_airflow_std_redirect": self.airflow_config.remove_airflow_std_redirect, } # now we are ready to create real pickle for the dag with ready_for_pickle(dag, DAG_UNPICKABLE_PROPERTIES) as pickable_dag: dp.pickle = pickable_dag session.add(dp) session.commit() dag.pickle_id = dp.id dag.last_pickled = timezone.utcnow()
def _run_task_by_executor(args, dag, ti): """ Sends the task to the executor for execution. This can result in the task being started by another host if the executor implementation does """ pickle_id = None if args.ship_dag: try: # Running remotely, so pickling the DAG with create_session() as session: pickle = DagPickle(dag) session.add(pickle) pickle_id = pickle.id # TODO: This should be written to a log print('Pickled dag {dag} as pickle_id: {pickle_id}'.format( dag=dag, pickle_id=pickle_id)) except Exception as e: print('Could not pickle the DAG') print(e) raise e executor = ExecutorLoader.get_default_executor() executor.start() print("Sending to executor.") executor.queue_task_instance( ti, mark_success=args.mark_success, pickle_id=pickle_id, ignore_all_deps=args.ignore_all_dependencies, ignore_depends_on_past=args.ignore_depends_on_past, ignore_task_deps=args.ignore_dependencies, ignore_ti_state=args.force, pool=args.pool) executor.heartbeat() executor.end()
def _run(args, dag, ti): if args.local: run_job = jobs.LocalTaskJob( task_instance=ti, mark_success=args.mark_success, pickle_id=args.pickle, ignore_all_deps=args.ignore_all_dependencies, ignore_depends_on_past=args.ignore_depends_on_past, ignore_task_deps=args.ignore_dependencies, ignore_ti_state=args.force, pool=args.pool) run_job.run() elif args.raw: ti._run_raw_task( # pylint: disable=protected-access mark_success=args.mark_success, job_id=args.job_id, pool=args.pool, ) else: pickle_id = None if args.ship_dag: try: # Running remotely, so pickling the DAG with db.create_session() as session: pickle = DagPickle(dag) session.add(pickle) pickle_id = pickle.id # TODO: This should be written to a log print('Pickled dag {dag} as pickle_id: {pickle_id}'.format( dag=dag, pickle_id=pickle_id)) except Exception as e: print('Could not pickle the DAG') print(e) raise e executor = get_default_executor() executor.start() print("Sending to executor.") executor.queue_task_instance( ti, mark_success=args.mark_success, pickle_id=pickle_id, ignore_all_deps=args.ignore_all_dependencies, ignore_depends_on_past=args.ignore_depends_on_past, ignore_task_deps=args.ignore_dependencies, ignore_ti_state=args.force, pool=args.pool) executor.heartbeat() executor.end()
def run(args): utils.pessimistic_connection_handling() # Setting up logging log = os.path.expanduser(conf.get('core', 'BASE_LOG_FOLDER')) directory = log + "/{args.dag_id}/{args.task_id}".format(args=args) if not os.path.exists(directory): os.makedirs(directory) args.execution_date = dateutil.parser.parse(args.execution_date) iso = args.execution_date.isoformat() filename = "{directory}/{iso}".format(**locals()) # store old log (to help with S3 appends) if os.path.exists(filename): with open(filename, 'r') as logfile: old_log = logfile.read() else: old_log = None subdir = None if args.subdir: subdir = args.subdir.replace( "DAGS_FOLDER", conf.get("core", "DAGS_FOLDER")) subdir = os.path.expanduser(subdir) logging.basicConfig( filename=filename, level=settings.LOGGING_LEVEL, format=settings.LOG_FORMAT) if not args.pickle: dagbag = DagBag(subdir) if args.dag_id not in dagbag.dags: msg = 'DAG [{0}] could not be found'.format(args.dag_id) logging.error(msg) raise AirflowException(msg) dag = dagbag.dags[args.dag_id] task = dag.get_task(task_id=args.task_id) else: session = settings.Session() logging.info('Loading pickle id {args.pickle}'.format(**locals())) dag_pickle = session.query( DagPickle).filter(DagPickle.id == args.pickle).first() if not dag_pickle: raise AirflowException("Who hid the pickle!? [missing pickle]") dag = dag_pickle.pickle task = dag.get_task(task_id=args.task_id) task_start_date = None if args.task_start_date: task_start_date = dateutil.parser.parse(args.task_start_date) task.start_date = task_start_date ti = TaskInstance(task, args.execution_date) if args.local: print("Logging into: " + filename) run_job = jobs.LocalTaskJob( task_instance=ti, mark_success=args.mark_success, force=args.force, pickle_id=args.pickle, task_start_date=task_start_date, ignore_dependencies=args.ignore_dependencies) run_job.run() elif args.raw: ti.run( mark_success=args.mark_success, force=args.force, ignore_dependencies=args.ignore_dependencies, job_id=args.job_id, ) else: pickle_id = None if args.ship_dag: try: # Running remotely, so pickling the DAG session = settings.Session() pickle = DagPickle(dag) session.add(pickle) session.commit() pickle_id = pickle.id print(( 'Pickled dag {dag} ' 'as pickle_id:{pickle_id}').format(**locals())) except Exception as e: print('Could not pickle the DAG') print(e) raise e executor = DEFAULT_EXECUTOR executor.start() print("Sending to executor.") executor.queue_task_instance( ti, mark_success=args.mark_success, pickle_id=pickle_id, ignore_dependencies=args.ignore_dependencies, force=args.force) executor.heartbeat() executor.end() if conf.get('core', 'S3_LOG_FOLDER').startswith('s3:'): import boto s3_log = filename.replace(log, conf.get('core', 'S3_LOG_FOLDER')) bucket, key = s3_log.lstrip('s3:/').split('/', 1) if os.path.exists(filename): # get logs with open(filename, 'r') as logfile: new_log = logfile.read() # remove old logs (since they are already in S3) if old_log: new_log.replace(old_log, '') try: s3 = boto.connect_s3() s3_key = boto.s3.key.Key(s3.get_bucket(bucket), key) # append new logs to old S3 logs, if available if s3_key.exists(): old_s3_log = s3_key.get_contents_as_string().decode() new_log = old_s3_log + '\n' + new_log # send log to S3 s3_key.set_contents_from_string(new_log) except: print('Could not send logs to S3.')
def run(args): utils.pessimistic_connection_handling() # Setting up logging log = os.path.expanduser(conf.get('core', 'BASE_LOG_FOLDER')) directory = log + "/{args.dag_id}/{args.task_id}".format(args=args) if not os.path.exists(directory): os.makedirs(directory) args.execution_date = dateutil.parser.parse(args.execution_date) iso = args.execution_date.isoformat() filename = "{directory}/{iso}".format(**locals()) subdir = None if args.subdir: subdir = args.subdir.replace( "DAGS_FOLDER", conf.get("core", "DAGS_FOLDER")) subdir = os.path.expanduser(subdir) logging.basicConfig( filename=filename, level=settings.LOGGING_LEVEL, format=settings.LOG_FORMAT) if not args.pickle: dagbag = DagBag(subdir) if args.dag_id not in dagbag.dags: msg = 'DAG [{0}] could not be found'.format(args.dag_id) logging.error(msg) raise AirflowException(msg) dag = dagbag.dags[args.dag_id] task = dag.get_task(task_id=args.task_id) else: session = settings.Session() logging.info('Loading pickle id {args.pickle}'.format(**locals())) dag_pickle = session.query( DagPickle).filter(DagPickle.id == args.pickle).first() if not dag_pickle: raise AirflowException("Who hid the pickle!? [missing pickle]") dag = dag_pickle.pickle task = dag.get_task(task_id=args.task_id) task_start_date = None if args.task_start_date: task_start_date = dateutil.parser.parse(args.task_start_date) task.start_date = task_start_date ti = TaskInstance(task, args.execution_date) if args.local: print("Logging into: " + filename) run_job = jobs.LocalTaskJob( task_instance=ti, mark_success=args.mark_success, force=args.force, pickle_id=args.pickle, task_start_date=task_start_date, ignore_dependencies=args.ignore_dependencies) run_job.run() elif args.raw: ti.run( mark_success=args.mark_success, force=args.force, ignore_dependencies=args.ignore_dependencies, job_id=args.job_id, ) else: pickle_id = None if args.ship_dag: try: # Running remotely, so pickling the DAG session = settings.Session() pickle = DagPickle(dag) session.add(pickle) session.commit() pickle_id = pickle.id print(( 'Pickled dag {dag} ' 'as pickle_id:{pickle_id}').format(**locals())) except Exception as e: print('Could not pickle the DAG') print(e) raise e executor = DEFAULT_EXECUTOR executor.start() print("Sending to executor.") executor.queue_task_instance( ti, mark_success=args.mark_success, pickle_id=pickle_id, ignore_dependencies=args.ignore_dependencies, force=args.force) executor.heartbeat() executor.end()
def _execute(self, session=None): """ Initializes all components required to run a dag for a specified date range and calls helper method to execute the tasks. """ ti_status = BackfillJob._DagRunTaskStatus() start_date = self.bf_start_date # Get intervals between the start/end dates, which will turn into dag runs run_dates = self.dag.get_run_dates(start_date=start_date, end_date=self.bf_end_date) if self.run_backwards: tasks_that_depend_on_past = [ t.task_id for t in self.dag.task_dict.values() if t.depends_on_past ] if tasks_that_depend_on_past: raise AirflowException( 'You cannot backfill backwards because one or more tasks depend_on_past: {}' .format(",".join(tasks_that_depend_on_past))) run_dates = run_dates[::-1] if len(run_dates) == 0: self.log.info( "No run dates were found for the given dates and dag interval." ) return # picklin' pickle_id = None if not self.donot_pickle and self.executor.__class__ not in ( executors.LocalExecutor, executors.SequentialExecutor): pickle = DagPickle(self.dag) session.add(pickle) session.commit() pickle_id = pickle.id executor = self.executor executor.start() ti_status.total_runs = len(run_dates) # total dag runs in backfill try: remaining_dates = ti_status.total_runs while remaining_dates > 0: dates_to_process = [ run_date for run_date in run_dates if run_date not in ti_status.executed_dag_run_dates ] self._execute_for_run_dates(run_dates=dates_to_process, ti_status=ti_status, executor=executor, pickle_id=pickle_id, start_date=start_date, session=session) remaining_dates = (ti_status.total_runs - len(ti_status.executed_dag_run_dates)) err = self._collect_errors(ti_status=ti_status, session=session) if err: raise AirflowException(err) if remaining_dates > 0: self.log.info( "max_active_runs limit for dag %s has been reached " " - waiting for other dag runs to finish", self.dag_id) time.sleep(self.delay_on_limit_secs) except (KeyboardInterrupt, SystemExit): self.log.warning("Backfill terminated by user.") # TODO: we will need to terminate running task instances and set the # state to failed. self._set_unfinished_dag_runs_to_failed(ti_status.active_runs) finally: session.commit() executor.end() self.log.info("Backfill done. Exiting.")
def _execute(self, session=None): """ Initializes all components required to run a dag for a specified date range and calls helper method to execute the tasks. """ ti_status = BackfillJob._DagRunTaskStatus() start_date = self.bf_start_date # Get DagRun schedule between the start/end dates, which will turn into dag runs. dagrun_start_date = timezone.coerce_datetime(start_date) if self.bf_end_date is None: dagrun_end_date = pendulum.now(timezone.utc) else: dagrun_end_date = pendulum.instance(self.bf_end_date) dagrun_infos = list( self.dag.iter_dagrun_infos_between(dagrun_start_date, dagrun_end_date)) if self.run_backwards: tasks_that_depend_on_past = [ t.task_id for t in self.dag.task_dict.values() if t.depends_on_past ] if tasks_that_depend_on_past: raise AirflowException( f'You cannot backfill backwards because one or more ' f'tasks depend_on_past: {",".join(tasks_that_depend_on_past)}' ) dagrun_infos = dagrun_infos[::-1] if not dagrun_infos: if not self.run_at_least_once: self.log.info( "No run dates were found for the given dates and dag interval." ) return dagrun_infos = [ DagRunInfo.interval(dagrun_start_date, dagrun_end_date) ] # picklin' pickle_id = None if not self.donot_pickle and self.executor_class not in ( executor_constants.LOCAL_EXECUTOR, executor_constants.SEQUENTIAL_EXECUTOR, executor_constants.DASK_EXECUTOR, ): pickle = DagPickle(self.dag) session.add(pickle) session.commit() pickle_id = pickle.id executor = self.executor executor.job_id = "backfill" executor.start() ti_status.total_runs = len(dagrun_infos) # total dag runs in backfill try: remaining_dates = ti_status.total_runs while remaining_dates > 0: dagrun_infos_to_process = [ dagrun_info for dagrun_info in dagrun_infos if dagrun_info.logical_date not in ti_status.executed_dag_run_dates ] self._execute_dagruns( dagrun_infos=dagrun_infos_to_process, ti_status=ti_status, executor=executor, pickle_id=pickle_id, start_date=start_date, session=session, ) remaining_dates = ti_status.total_runs - len( ti_status.executed_dag_run_dates) err = self._collect_errors(ti_status=ti_status, session=session) if err: raise BackfillUnfinished(err, ti_status) if remaining_dates > 0: self.log.info( "max_active_runs limit for dag %s has been reached " " - waiting for other dag runs to finish", self.dag_id, ) time.sleep(self.delay_on_limit_secs) except (KeyboardInterrupt, SystemExit): self.log.warning("Backfill terminated by user.") # TODO: we will need to terminate running task instances and set the # state to failed. self._set_unfinished_dag_runs_to_failed(ti_status.active_runs) finally: session.commit() executor.end() self.log.info("Backfill done. Exiting.")
def run(args, dag=None): db_utils.pessimistic_connection_handling() if dag: args.dag_id = dag.dag_id # Setting up logging log_base = os.path.expanduser(conf.get('core', 'BASE_LOG_FOLDER')) directory = log_base + "/{args.dag_id}/{args.task_id}".format(args=args) if not os.path.exists(directory): os.makedirs(directory) iso = args.execution_date.isoformat() filename = "{directory}/{iso}".format(**locals()) logging.root.handlers = [] logging.basicConfig( filename=filename, level=settings.LOGGING_LEVEL, format=settings.LOG_FORMAT) if not args.pickle and not dag: dag = get_dag(args) elif not dag: session = settings.Session() logging.info('Loading pickle id {args.pickle}'.format(**locals())) dag_pickle = session.query( DagPickle).filter(DagPickle.id == args.pickle).first() if not dag_pickle: raise AirflowException("Who hid the pickle!? [missing pickle]") dag = dag_pickle.pickle task = dag.get_task(task_id=args.task_id) ti = TaskInstance(task, args.execution_date) if args.local: print("Logging into: " + filename) run_job = jobs.LocalTaskJob( task_instance=ti, mark_success=args.mark_success, force=args.force, pickle_id=args.pickle, ignore_dependencies=args.ignore_dependencies, ignore_depends_on_past=args.ignore_depends_on_past, pool=args.pool) run_job.run() elif args.raw: ti.run( mark_success=args.mark_success, force=args.force, ignore_dependencies=args.ignore_dependencies, ignore_depends_on_past=args.ignore_depends_on_past, job_id=args.job_id, pool=args.pool, ) else: pickle_id = None if args.ship_dag: try: # Running remotely, so pickling the DAG session = settings.Session() pickle = DagPickle(dag) session.add(pickle) session.commit() pickle_id = pickle.id print(( 'Pickled dag {dag} ' 'as pickle_id:{pickle_id}').format(**locals())) except Exception as e: print('Could not pickle the DAG') print(e) raise e executor = DEFAULT_EXECUTOR executor.start() print("Sending to executor.") executor.queue_task_instance( ti, mark_success=args.mark_success, pickle_id=pickle_id, ignore_dependencies=args.ignore_dependencies, ignore_depends_on_past=args.ignore_depends_on_past, force=args.force, pool=args.pool) executor.heartbeat() executor.end() # Force the log to flush, and set the handler to go back to normal so we # don't continue logging to the task's log file. The flush is important # because we subsequently read from the log to insert into S3 or Google # cloud storage. logging.root.handlers[0].flush() logging.root.handlers = [] # store logs remotely remote_base = conf.get('core', 'REMOTE_BASE_LOG_FOLDER') # deprecated as of March 2016 if not remote_base and conf.get('core', 'S3_LOG_FOLDER'): warnings.warn( 'The S3_LOG_FOLDER conf key has been replaced by ' 'REMOTE_BASE_LOG_FOLDER. Your conf still works but please ' 'update airflow.cfg to ensure future compatibility.', DeprecationWarning) remote_base = conf.get('core', 'S3_LOG_FOLDER') if os.path.exists(filename): # read log and remove old logs to get just the latest additions with open(filename, 'r') as logfile: log = logfile.read() remote_log_location = filename.replace(log_base, remote_base) # S3 if remote_base.startswith('s3:/'): logging_utils.S3Log().write(log, remote_log_location) # GCS elif remote_base.startswith('gs:/'): logging_utils.GCSLog().write( log, remote_log_location, append=True) # Other elif remote_base and remote_base != 'None': logging.error( 'Unsupported remote log location: {}'.format(remote_base))
def _execute(self, session=None): """ Initializes all components required to run a dag for a specified date range and calls helper method to execute the tasks. """ ti_status = BackfillJob._DagRunTaskStatus() start_date = self.bf_start_date # Get DagRun schedule between the start/end dates, which will turn into dag runs. dagrun_start_date = timezone.coerce_datetime(start_date) if self.bf_end_date is None: dagrun_end_date = pendulum.now(timezone.utc) else: dagrun_end_date = pendulum.instance(self.bf_end_date) dagrun_infos = list( self.dag.iter_dagrun_infos_between(dagrun_start_date, dagrun_end_date)) if self.run_backwards: tasks_that_depend_on_past = [ t.task_id for t in self.dag.task_dict.values() if t.depends_on_past ] if tasks_that_depend_on_past: raise AirflowException( f'You cannot backfill backwards because one or more ' f'tasks depend_on_past: {",".join(tasks_that_depend_on_past)}' ) dagrun_infos = dagrun_infos[::-1] if not dagrun_infos: if not self.run_at_least_once: self.log.info( "No run dates were found for the given dates and dag interval." ) return dagrun_infos = [ DagRunInfo.interval(dagrun_start_date, dagrun_end_date) ] dag_with_subdags_ids = [d.dag_id for d in self._get_dag_with_subdags()] running_dagruns = DagRun.find( dag_id=dag_with_subdags_ids, execution_start_date=self.bf_start_date, execution_end_date=self.bf_end_date, no_backfills=True, state=DagRunState.RUNNING, ) if running_dagruns: for run in running_dagruns: self.log.error( "Backfill cannot be created for DagRun %s in %s, as there's already %s in a RUNNING " "state.", run.run_id, run.execution_date.strftime("%Y-%m-%dT%H:%M:%S"), run.run_type, ) self.log.error( "Changing DagRun into BACKFILL would cause scheduler to lose track of executing " "tasks. Not changing DagRun type into BACKFILL, and trying insert another DagRun into " "database would cause database constraint violation for dag_id + execution_date " "combination. Please adjust backfill dates or wait for this DagRun to finish.", ) return # picklin' pickle_id = None if not self.donot_pickle and self.executor_class not in ( executor_constants.LOCAL_EXECUTOR, executor_constants.SEQUENTIAL_EXECUTOR, executor_constants.DASK_EXECUTOR, ): pickle = DagPickle(self.dag) session.add(pickle) session.commit() pickle_id = pickle.id executor = self.executor executor.job_id = "backfill" executor.start() ti_status.total_runs = len(dagrun_infos) # total dag runs in backfill try: remaining_dates = ti_status.total_runs while remaining_dates > 0: dagrun_infos_to_process = [ dagrun_info for dagrun_info in dagrun_infos if dagrun_info.logical_date not in ti_status.executed_dag_run_dates ] self._execute_dagruns( dagrun_infos=dagrun_infos_to_process, ti_status=ti_status, executor=executor, pickle_id=pickle_id, start_date=start_date, session=session, ) remaining_dates = ti_status.total_runs - len( ti_status.executed_dag_run_dates) err = self._collect_errors(ti_status=ti_status, session=session) if err: if not self.continue_on_failures or ti_status.deadlocked: raise BackfillUnfinished(err, ti_status) if remaining_dates > 0: self.log.info( "max_active_runs limit for dag %s has been reached " " - waiting for other dag runs to finish", self.dag_id, ) time.sleep(self.delay_on_limit_secs) except (KeyboardInterrupt, SystemExit): self.log.warning("Backfill terminated by user.") # TODO: we will need to terminate running task instances and set the # state to failed. self._set_unfinished_dag_runs_to_failed(ti_status.active_runs) finally: session.commit() executor.end() self.log.info("Backfill done for DAG %s. Exiting.", self.dag)
def run(args): utils.pessimistic_connection_handling() # Setting up logging log_base = os.path.expanduser(configuration.get('core', 'BASE_LOG_FOLDER')) directory = log_base + "/{args.dag_id}/{args.task_id}".format(args=args) if not os.path.exists(directory): os.makedirs(directory) args.execution_date = dateutil.parser.parse(args.execution_date) iso = args.execution_date.isoformat() filename = "{directory}/{iso}".format(**locals()) subdir = process_subdir(args.subdir) logging.root.handlers = [] logging.basicConfig(filename=filename, level=settings.LOGGING_LEVEL, format=settings.LOG_FORMAT) if not args.pickle: dagbag = DagBag(subdir) if args.dag_id not in dagbag.dags: msg = 'DAG [{0}] could not be found in {1}'.format( args.dag_id, subdir) logging.error(msg) raise AirflowException(msg) dag = dagbag.dags[args.dag_id] task = dag.get_task(task_id=args.task_id) else: session = settings.Session() logging.info('Loading pickle id {args.pickle}'.format(**locals())) dag_pickle = session.query(DagPickle).filter( DagPickle.id == args.pickle).first() if not dag_pickle: raise AirflowException("Who hid the pickle!? [missing pickle]") dag = dag_pickle.pickle task = dag.get_task(task_id=args.task_id) task_start_date = None if args.task_start_date: task_start_date = dateutil.parser.parse(args.task_start_date) task.start_date = task_start_date ti = TaskInstance(task, args.execution_date) if args.local: print("Logging into: " + filename) run_job = jobs.LocalTaskJob( task_instance=ti, mark_success=args.mark_success, force=args.force, pickle_id=args.pickle, task_start_date=task_start_date, ignore_dependencies=args.ignore_dependencies, pool=args.pool) run_job.run() elif args.raw: ti.run( mark_success=args.mark_success, force=args.force, ignore_dependencies=args.ignore_dependencies, job_id=args.job_id, pool=args.pool, ) else: pickle_id = None if args.ship_dag: try: # Running remotely, so pickling the DAG session = settings.Session() pickle = DagPickle(dag) session.add(pickle) session.commit() pickle_id = pickle.id print(('Pickled dag {dag} ' 'as pickle_id:{pickle_id}').format(**locals())) except Exception as e: print('Could not pickle the DAG') print(e) raise e executor = DEFAULT_EXECUTOR executor.start() print("Sending to executor.") executor.queue_task_instance( ti, mark_success=args.mark_success, pickle_id=pickle_id, ignore_dependencies=args.ignore_dependencies, force=args.force, pool=args.pool) executor.heartbeat() executor.end() # store logs remotely remote_base = configuration.get('core', 'REMOTE_BASE_LOG_FOLDER') # deprecated as of March 2016 if not remote_base and configuration.get('core', 'S3_LOG_FOLDER'): warnings.warn( 'The S3_LOG_FOLDER configuration key has been replaced by ' 'REMOTE_BASE_LOG_FOLDER. Your configuration still works but please ' 'update airflow.cfg to ensure future compatibility.', DeprecationWarning) remote_base = configuration.get('core', 'S3_LOG_FOLDER') if os.path.exists(filename): # read log and remove old logs to get just the latest additions with open(filename, 'r') as logfile: log = logfile.read() remote_log_location = filename.replace(log_base, remote_base) # S3 if remote_base.startswith('s3:/'): utils.S3Log().write(log, remote_log_location) # GCS elif remote_base.startswith('gs:/'): utils.GCSLog().write(log, remote_log_location, append=True) # Other elif remote_base: logging.error( 'Unsupported remote log location: {}'.format(remote_base))