with models.DAG( "example_create_and_deploy", schedule_interval='@once', # Override to match your needs start_date=START_DATE, catchup=False, user_defined_macros={ "get_target_column_spec": get_target_column_spec, "target": TARGET, "extract_object_id": extract_object_id, }, tags=['example'], ) as create_deploy_dag: # [START howto_operator_automl_create_dataset] create_dataset_task = AutoMLCreateDatasetOperator( task_id="create_dataset_task", dataset=DATASET, location=GCP_AUTOML_LOCATION, project_id=GCP_PROJECT_ID, ) dataset_id = create_dataset_task.output['dataset_id'] # [END howto_operator_automl_create_dataset] MODEL["dataset_id"] = dataset_id # [START howto_operator_automl_import_data] import_dataset_task = AutoMLImportDataOperator( task_id="import_dataset_task", dataset_id=dataset_id, location=GCP_AUTOML_LOCATION, input_config=IMPORT_INPUT_CONFIG, )
IMPORT_INPUT_CONFIG = {"gcs_source": {"input_uris": [GCP_AUTOML_TRACKING_BUCKET]}} default_args = {"start_date": days_ago(1)} extract_object_id = CloudAutoMLHook.extract_object_id # Example DAG for AutoML Video Intelligence Object Tracking with models.DAG( "example_automl_video_tracking", default_args=default_args, schedule_interval=None, # Override to match your needs user_defined_macros={"extract_object_id": extract_object_id}, tags=['example'], ) as example_dag: create_dataset_task = AutoMLCreateDatasetOperator( task_id="create_dataset_task", dataset=DATASET, location=GCP_AUTOML_LOCATION ) dataset_id = ( '{{ task_instance.xcom_pull("create_dataset_task", key="dataset_id") }}' ) import_dataset_task = AutoMLImportDataOperator( task_id="import_dataset_task", dataset_id=dataset_id, location=GCP_AUTOML_LOCATION, input_config=IMPORT_INPUT_CONFIG, ) MODEL["dataset_id"] = dataset_id