class AirfoilCFD(ExplicitComponent): def setup(self): ###################### ### needed Objects ### self.bzFoil = BPAirfoil() self.air = Airfoil(None) ##################### ### openMDAO init ### ### INPUTS self.add_input('r_le', val=-0.05, desc='nose radius') self.add_input('beta_te', val=0.1, desc='thickness angle trailing edge') self.add_input('x_t', val=0.3, desc='dickenruecklage') self.add_input('y_t', val=0.1, desc='max thickness') self.add_input('gamma_le', val=0.5, desc='camber angle leading edge') self.add_input('x_c', val=0.5, desc='woelbungsruecklage') self.add_input('y_c', val=0.1, desc='max camber') self.add_input('alpha_te', val=-0.1, desc='camber angle trailing edge') #self.add_input('z_te', val=0., desc='camber trailing edge') # bezier parameters self.add_input('b_8', val=0.05, desc='') self.add_input('b_15', val=0.75, desc='') self.add_input('b_0', val=0.1, desc='') self.add_input('b_2', val=0.25, desc='') self.add_input('b_17', val=0.9, desc='') ###only for visualiziation self.add_input('offsetFront', val=0.1, desc='...') self.add_input('cabin_height', val=1.0, desc='...') self.add_input('angle', val=1.0, desc='...') ### OUTPUTS self.add_output('c_d', val=.2) self.add_output('c_l', val=.2) self.add_output('c_m', val=.2) #self.add_output('y_t', val=0.1, desc='max thickness') #self.add_output('cabin_height', val=cabinHeigth) #self.add_output('angle', val=0.) #self.add_output('offsetFront', val=.1) self.declare_partials('*', '*', method='fd') self.executionCounter = 0 """ def fit_cabin(self, xFront, angle): top, buttom = self.bzFoil.get_cooridnates_top_buttom(500) if self.bzFoil.valid == False: return False xBack = xFront + cabinLength # inputs['length'] self.air.set_coordinates(top, buttom) self.air.rotate(angle) yMinButtom = max(self.air.get_buttom_y(xFront), self.air.get_buttom_y(xBack)) yMaxTop = min(self.air.get_top_y(xFront), self.air.get_top_y(xBack)) height = yMaxTop - yMinButtom return height #outputs['cabin_height'] = height """ def compute(self, inputs, outputs): error = False self.bzFoil.r_le = inputs['r_le'] self.bzFoil.beta_te = inputs['beta_te'] self.bzFoil.x_t = inputs['x_t'] self.bzFoil.y_t = inputs['y_t'] self.bzFoil.gamma_le = inputs['gamma_le'] self.bzFoil.x_c = inputs['x_c'] self.bzFoil.y_c = inputs['y_c'] self.bzFoil.alpha_te = inputs['alpha_te'] #self.bzFoil.z_te = inputs['z_te'] self.bzFoil.b_8 = inputs['b_8'] self.bzFoil.b_15 = inputs['b_15'] self.bzFoil.b_0 = inputs['b_0'] self.bzFoil.b_2 = inputs['b_2'] self.bzFoil.b_17 = inputs['b_17'] projectName = PROJECT_NAME_PREFIX + '_%09d' % self.executionCounter cfd = CFDrun(projectName) airFoilCoords = self.bzFoil.generate_airfoil(500, show_plot=False, save_plot_path=WORKING_DIR+'/'+projectName+'/airfoil.png', param_dump_file=WORKING_DIR+'/'+projectName+'/airfoil.txt') # check if bz is valid if self.bzFoil.valid: print('valid bz') ### use cabin fit optimization to find y_t #cabinFit.cabinHeigth = cabinHeigth #cabinFit.cabinLength = cabinLength #cabinFit.bzFoil = self.bzFoil #y_t, height, angle, offsetFront = cabinFit.run_cabin_opti(show_plot=False) #self.bzFoil.y_t = y_t #outputs['cabin_height'] = height #outputs['y_t'] = y_t #outputs['angle'] = angle #outputs['offsetFront'] = offsetFront #print('new cabin_height= ' + str(outputs['cabin_height'])) if not self.bzFoil.valid: #raise AnalysisError('AirfoilCFD: invalid BPAirfoil') print('ERROR: AirfoilCFD, invalid BPAirfoil') self.bzFoil.save_parameters_to_file( WORKING_DIR + '/bz_error_' + datetime.now().strftime('%Y-%m-%d_%H_%M_%S') + '.txt') error = True else: self.bzFoil.plot_airfoil_with_cabin(inputs['offsetFront'], cabinLength, inputs['cabin_height'], inputs['angle'], show_plot=False, save_plot_path=WORKING_DIR + '/' + projectName + '/airfoil_cabin.png') ### now we do cfd top, buttom = self.bzFoil.get_cooridnates_top_buttom(500) cfd.set_airfoul_coords(top, buttom) cfd.c2d.pointsInNormalDir = 80 cfd.c2d.pointNrAirfoilSurface = 200 cfd.c2d.reynoldsNum = REYNOLD cfd.construct2d_generate_mesh(scale=SCALE, plot=False) cfd.su2_fix_mesh() cfd.su2_solve(config) results = cfd.su2_parse_iteration_result() cfd.clean_up() if float(results['CD']) <= 0. or float(results['CD']) > 100.: #raise AnalysisError('AirfoilCFD: c_d is out of range (cfd failed)') print('ERROR: AirfoilCFD, c_d is out of range (cfd failed)') error = True outputs['c_d'] = results['CD'] outputs['c_l'] = results['CL'] outputs['c_m'] = results['CMz'] print('c_l= ' + str(outputs['c_l'])) print('c_d= ' + str(outputs['c_d'])) print('c_m= ' + str(outputs['c_m'])) print('c_l/c_d= ' + str(results['CL/CD'])) print('cfdIterations= ' + str(results['Iteration'])) write_to_log(str(self.executionCounter) + ',' + datetime.now().strftime('%H:%M:%S') + ',' + str(outputs['c_l']) + ',' + str(outputs['c_d']) + ',' + str(outputs['c_m']) + ',' + str(results['CL/CD']) + ',' + str(results['Iteration']) + ',' + str(inputs['cabin_height']) + ',' + str(inputs['offsetFront']) + ',' + str(inputs['angle']) + ',' + str(inputs['r_le']) + ',' + str(inputs['beta_te']) + ',' + str(inputs['x_t']) + ',' + str(inputs['y_t']) + ',' + str(inputs['gamma_le']) + ',' + str(inputs['x_c']) + ',' + str(inputs['y_c']) + ',' + str(inputs['alpha_te']) + ',' + str(self.bzFoil.z_te) + ','#+ str(inputs['z_te']) + ',' + str(inputs['b_8']) + ',' + str(inputs['b_15']) + ',' + str(inputs['b_0']) + ',' + str(inputs['b_17']) + ',' + str(inputs['b_2'])) globBzFoil = self.bzFoil #workaround since raising an error seems to crash the optimization if error: outputs['c_d'] = 999. outputs['c_l'] = 0. outputs['c_m'] = 0. self.executionCounter += 1
class AirfoilCFD(ExplicitComponent): def setup(self): ###################### ### needed Objects ### self.bzFoil = BPAirfoil() ##################### ### openMDAO init ### ### INPUTS self.add_input('r_le', val=-0.05, desc='nose radius') self.add_input('beta_te', val=0.1, desc='thickness angle trailing edge') #self.add_input('dz_te', val=0., desc='thickness trailing edge') self.add_input('x_t', val=0.3, desc='dickenruecklage') self.add_input('y_t', val=0.1, desc='max thickness') self.add_input('gamma_le', val=0.5, desc='camber angle leading edge') self.add_input('x_c', val=0.5, desc='woelbungsruecklage') self.add_input('y_c', val=0.1, desc='max camber') self.add_input('alpha_te', val=-0.1, desc='camber angle trailing edge') self.add_input('z_te', val=0., desc='camber trailing edge') # bezier parameters self.add_input('b_8', val=0.05, desc='') self.add_input('b_15', val=0.75, desc='') self.add_input('b_0', val=0.1, desc='') self.add_input('b_2', val=0.25, desc='') self.add_input('b_17', val=0.9, desc='') # just for plotin self.add_input('offsetFront', val=0.1, desc='...') self.add_input('angle', val=.0, desc='...') self.add_input('cabin_height', val=.0, desc='...') ### OUTPUTS self.add_output('c_d', val=.2) self.add_output('c_l', val=.2) self.add_output('c_m', val=.2) self.declare_partials('*', '*', method='fd') self.executionCounter = 0 def compute(self, inputs, outputs): error = False self.bzFoil.r_le = inputs['r_le'] self.bzFoil.beta_te = inputs['beta_te'] #self.bzFoil.dz_te = inputs['dz_te'] self.bzFoil.x_t = inputs['x_t'] self.bzFoil.y_t = inputs['y_t'] self.bzFoil.gamma_le = inputs['gamma_le'] self.bzFoil.x_c = inputs['x_c'] self.bzFoil.y_c = inputs['y_c'] self.bzFoil.alpha_te = inputs['alpha_te'] self.bzFoil.z_te = inputs['z_te'] self.bzFoil.b_8 = inputs['b_8'] self.bzFoil.b_15 = inputs['b_15'] self.bzFoil.b_0 = inputs['b_0'] self.bzFoil.b_2 = inputs['b_2'] self.bzFoil.b_17 = inputs['b_17'] projectName = PROJECT_NAME_PREFIX + '_%09d' % self.executionCounter cfd = CFDrun(projectName) airFoilCoords = self.bzFoil.generate_airfoil(500, show_plot=False, save_plot_path=WORKING_DIR+'/'+projectName+'/airfoil.png', param_dump_file=WORKING_DIR+'/'+projectName+'/airfoil.txt') self.bzFoil.plot_airfoil_with_cabin(inputs['offsetFront'], cabinLength, inputs['cabin_height'], inputs['angle'], show_plot=False, save_plot_path=WORKING_DIR+'/'+projectName+'/airfoil_cabin.png') if not self.bzFoil.valid: #raise AnalysisError('AirfoilCFD: invalid BPAirfoil') print('ERROR: AirfoilCFD, invalid BPAirfoil') error = True else: top, buttom = self.bzFoil.get_cooridnates_top_buttom(500) #self.air.set_coordinates(top, buttom) cfd.set_airfoul_coords(top, buttom) cfd.c2d.pointsInNormalDir = 80 cfd.c2d.pointNrAirfoilSurface = 200 cfd.c2d.reynoldsNum = REYNOLD cfd.construct2d_generate_mesh(scale=SCALE, plot=False) cfd.su2_fix_mesh() cfd.su2_solve(config) #totalCL, totalCD, totalCM, totalE = cfd.su2_parse_results() results = cfd.su2_parse_iteration_result() cfd.clean_up() if float(results['CD']) <= 0. or float(results['CD']) > 100.: #raise AnalysisError('AirfoilCFD: c_d is out of range (cfd failed)') print('ERROR: AirfoilCFD, c_d is out of range (cfd failed)') error = True outputs['c_d'] = results['CD'] outputs['c_l'] = results['CL'] outputs['c_m'] = results['CMz'] print('c_l= ' + str(outputs['c_l'])) print('c_d= ' + str(outputs['c_d'])) print('c_m= ' + str(outputs['c_m'])) print('c_l/c_d= ' + str(results['CL/CD'])) print('cfdIterations= ' + str(results['Iteration'])) write_to_log(str(self.executionCounter) + ',' + datetime.now().strftime('%H:%M:%S') + ',' + str(outputs['c_l']) + ',' + str(outputs['c_d']) + ',' + str(outputs['c_m']) + ',' + str(results['CL/CD']) + ',' + str(results['Iteration']) + ',' + str(inputs['cabin_height']) + ',' + str(inputs['offsetFront']) + ',' + str(inputs['angle']) + ',' + str(inputs['r_le']) + ',' + str(inputs['beta_te']) + ',' + str(inputs['x_t']) + ',' + str(inputs['y_t']) + ',' + str(inputs['gamma_le']) + ',' + str(inputs['x_c']) + ',' + str(inputs['y_c']) + ',' + str(inputs['alpha_te']) + ',' + str(inputs['z_te']) + ',' + str(inputs['b_8']) + ',' + str(inputs['b_15']) + ',' + str(inputs['b_0']) + ',' + str(inputs['b_17']) + ',' + str(inputs['b_2'])) #workaround since raising an error seems to crash the optimization if error: outputs['c_d'] = 999. outputs['c_l'] = 0. outputs['c_m'] = 0. self.executionCounter += 1
class AirfoilCFD(ExplicitComponent): def setup(self): ###################### ### needed Objects ### self.bzFoil = BPAirfoil() self.air = Airfoil(None) ##################### ### openMDAO init ### ### INPUTS self.add_input('r_le', val=-0.05, desc='nose radius') self.add_input('beta_te', val=0.1, desc='thickness angle trailing edge') #self.add_input('dz_te', val=0., desc='thickness trailing edge') self.add_input('x_t', val=0.3, desc='dickenruecklage') #self.add_input('y_t', val=0.1, desc='max thickness') self.add_input('gamma_le', val=0.5, desc='camber angle leading edge') self.add_input('x_c', val=0.5, desc='woelbungsruecklage') self.add_input('y_c', val=0.1, desc='max camber') self.add_input('alpha_te', val=-0.1, desc='camber angle trailing edge') #self.add_input('z_te', val=0., desc='camber trailing edge') # bezier parameters self.add_input('b_8', val=0.05, desc='') self.add_input('b_15', val=0.75, desc='') self.add_input('b_0', val=0.1, desc='') self.add_input('b_2', val=0.25, desc='') self.add_input('b_17', val=0.9, desc='') # just for plotin #self.add_input('offsetFront', val=0.1, desc='...') #self.add_input('angle', val=.0, desc='...') #self.add_input('cabin_height', val=.0, desc='...') ### OUTPUTS self.add_output('c_d', val=.2) self.add_output('c_l', val=.2) self.add_output('c_m', val=.2) self.add_output('y_t', val=0.1, desc='max thickness') self.add_output('cabin_height', val=cabinHeigth) self.add_output('angle', val=.0, desc='...') self.add_output('offsetFront', val=0.1, desc='...') self.declare_partials('*', '*', method='fd') self.executionCounter = 0 self.prevAngle = -0.239 self.prevOffsetFront = 0.117 def calc_max_cabin_height(self, xFront, angle): top, buttom = self.bzFoil.get_cooridnates_top_buttom(100) if self.bzFoil.valid == False: return False xBack = xFront + cabinLength # inputs['length'] self.air.set_coordinates(top, buttom) self.air.rotate(angle) yMinButtom = max(self.air.get_buttom_y(xFront), self.air.get_buttom_y(xBack)) yMaxTop = min(self.air.get_top_y(xFront), self.air.get_top_y(xBack)) height = yMaxTop - yMinButtom return height #outputs['cabin_height'] = height def calc_min_y_t(self, offset_front, angle): self.bzFoil.y_t = 0.07 init_height = self.calc_max_cabin_height(offset_front, angle) if self.bzFoil.valid: iterCounter = 0 height = init_height while (abs(height - cabinHeigth) > 1e-6): self.bzFoil.y_t += cabinHeigth - height height = self.calc_max_cabin_height(offset_front, angle) if height == False or self.bzFoil.y_t > 100 or self.bzFoil.y_t < 0.: self.bzFoil.y_t = 9999. return -1. iterCounter += 1 #print('height: ' + str(height) + '\t' + str(self.bzFoil.y_t)) #print('calc_min_y_t: needed iterations= ' + str(iterCounter)) return height #workaround for invalid airfoil self.bzFoil.y_t = 9999. return -1. def optimize_cabin_angle(self, offset_front, angle): iterCounter = 0 stepWidth = .01 iterStopStepWidth = 1e-3 height = self.calc_min_y_t(offset_front, angle) act_min_y_t = self.bzFoil.y_t while (abs(stepWidth) > iterStopStepWidth): height = self.calc_min_y_t(offset_front, angle + stepWidth) plus_min_y_t = self.bzFoil.y_t if plus_min_y_t < act_min_y_t: angle = angle + stepWidth act_min_y_t = plus_min_y_t else: height = self.calc_min_y_t(offset_front, angle - stepWidth) minus_min_y_t = self.bzFoil.y_t if minus_min_y_t < act_min_y_t: angle = angle - stepWidth act_min_y_t = minus_min_y_t else: stepWidth = stepWidth / 10 iterCounter += 1 print('new angle: ' + str(angle) + '\t' + str(self.bzFoil.y_t)) print('optimize_cabin_angle: needed iterations= ' + str(iterCounter)) return angle def optimize_cabin_front_offset(self, offset_front, angle): iterCounter = 0 stepWidth = .01 iterStopStepWidth = 1e-3 newAngle = 0 #angle act_angle = self.optimize_cabin_angle(offset_front, newAngle) act_min_y_t = self.bzFoil.y_t while (abs(stepWidth) > iterStopStepWidth): plus_angle = self.optimize_cabin_angle(offset_front + stepWidth, newAngle) plus_min_y_t = self.bzFoil.y_t if plus_min_y_t < act_min_y_t: offset_front = offset_front + stepWidth newAngle = plus_angle act_min_y_t = plus_min_y_t else: minus_angle = self.optimize_cabin_angle( offset_front - stepWidth, newAngle) minus_min_y_t = self.bzFoil.y_t if minus_min_y_t < act_min_y_t: offset_front = offset_front - stepWidth newAngle = minus_angle act_min_y_t = minus_min_y_t else: stepWidth = stepWidth / 10 newAngle = act_angle iterCounter += 1 print('new offset_front: ' + str(offset_front)) print('optimize_cabin_angle: needed iterations= ' + str(iterCounter)) return offset_front, newAngle def compute(self, inputs, outputs): error = False self.bzFoil.r_le = inputs['r_le'] self.bzFoil.beta_te = inputs['beta_te'] #self.bzFoil.dz_te = inputs['dz_te'] self.bzFoil.x_t = inputs['x_t'] #self.bzFoil.y_t = inputs['y_t'] self.bzFoil.gamma_le = inputs['gamma_le'] self.bzFoil.x_c = inputs['x_c'] self.bzFoil.y_c = inputs['y_c'] self.bzFoil.alpha_te = inputs['alpha_te'] self.bzFoil.z_te = 0 #inputs['z_te'] self.bzFoil.b_8 = inputs['b_8'] self.bzFoil.b_15 = inputs['b_15'] self.bzFoil.b_0 = inputs['b_0'] self.bzFoil.b_2 = inputs['b_2'] self.bzFoil.b_17 = inputs['b_17'] projectName = PROJECT_NAME_PREFIX + '_%09d' % self.executionCounter cfd = CFDrun(projectName) airFoilCoords = self.bzFoil.generate_airfoil( 500, show_plot=False, save_plot_path=WORKING_DIR + '/' + projectName + '/airfoil.png', param_dump_file=WORKING_DIR + '/' + projectName + '/airfoil.txt') # check how high the cabin can be outputs['offsetFront'], outputs[ 'angle'] = self.optimize_cabin_front_offset( self.prevOffsetFront, self.prevAngle) self.prevAngle = outputs['angle'] outputs['cabin_height'] = self.calc_min_y_t(outputs['offsetFront'], outputs['angle']) #if self.bzFoil.valid: outputs['y_t'] = self.bzFoil.y_t print('new cabin_height= ' + str(outputs['cabin_height'])) if not self.bzFoil.valid: #raise AnalysisError('AirfoilCFD: invalid BPAirfoil') print('ERROR: AirfoilCFD, invalid BPAirfoil') self.bzFoil.save_parameters_to_file( WORKING_DIR + '/bz_error_' + datetime.now().strftime('%Y-%m-%d_%H_%M_%S') + '.txt') error = True else: self.bzFoil.plot_airfoil_with_cabin(outputs['offsetFront'], cabinLength, outputs['cabin_height'], outputs['angle'], show_plot=True, save_plot_path=WORKING_DIR + '/' + projectName + '/airfoil_cabin.png') ### now we do cfd top, buttom = self.bzFoil.get_cooridnates_top_buttom(500) cfd.set_airfoul_coords(top, buttom) cfd.c2d.pointsInNormalDir = 80 cfd.c2d.pointNrAirfoilSurface = 200 cfd.c2d.reynoldsNum = REYNOLD cfd.construct2d_generate_mesh(scale=SCALE, plot=False) cfd.su2_fix_mesh() cfd.su2_solve(config) #totalCL, totalCD, totalCM, totalE = cfd.su2_parse_results() results = cfd.su2_parse_iteration_result() cfd.clean_up() if float(results['CD']) <= 0. or float(results['CD']) > 100.: #raise AnalysisError('AirfoilCFD: c_d is out of range (cfd failed)') print('ERROR: AirfoilCFD, c_d is out of range (cfd failed)') error = True outputs['c_d'] = results['CD'] outputs['c_l'] = results['CL'] outputs['c_m'] = results['CMz'] print('c_l= ' + str(outputs['c_l'])) print('c_d= ' + str(outputs['c_d'])) print('c_m= ' + str(outputs['c_m'])) print('c_l/c_d= ' + str(results['CL/CD'])) print('cfdIterations= ' + str(results['Iteration'])) write_to_log( str(self.executionCounter) + ',' + datetime.now().strftime('%H:%M:%S') + ',' + str(outputs['c_l']) + ',' + str(outputs['c_d']) + ',' + str(outputs['c_m']) + ',' + str(results['CL/CD']) + ',' + str(results['Iteration']) + ',' + str(outputs['cabin_height']) + ',' + str(outputs['offsetFront']) + ',' + str(outputs['angle']) + ',' + str(inputs['r_le']) + ',' + str(inputs['beta_te']) + ',' + str(inputs['x_t']) + ',' + str(outputs['y_t']) + ',' + str(inputs['gamma_le']) + ',' + str(inputs['x_c']) + ',' + str(inputs['y_c']) + ',' + str(inputs['alpha_te']) + ',' + str(self.bzFoil.z_te) + ',' + str(inputs['b_8']) + ',' + str(inputs['b_15']) + ',' + str(inputs['b_0']) + ',' + str(inputs['b_17']) + ',' + str(inputs['b_2'])) #workaround since raising an error seems to crash the optimization if error: outputs['c_d'] = 999. outputs['c_l'] = 0. outputs['c_m'] = 0. self.executionCounter += 1