# print ('opt iwae',np.mean(iwaes)) # print() # print ('opt vae flex',np.mean(vaes_flex)) # print ('opt iwae flex',np.mean(iwaes_flex)) # print() # VAE_train = test_vae(model=model, data_x=train_x[:n_data], batch_size=n_data, display=10, k=50) # IW_train = test(model=model, data_x=train_x[:n_data], batch_size=n_data, display=10, k=50) # print ('amortized VAE',VAE_train) # print ('amortized IW',IW_train) print() AIS_train = test_ais(model=model, data_x=train_x[:n_data], batch_size=n_data, display=2, k=100, n_intermediate_dists=2000) print ('AIS_train',AIS_train) print() print() print ('AIS_train',AIS_train) # print() print ('opt vae flex',np.mean(vaes_flex)) # print() print ('opt vae',np.mean(vaes)) # print() print ('amortized VAE',VAE_train) print()
data_x=train_x[:n_data], batch_size=n_data, display=10, k=50) IW_train = test(model=model, data_x=train_x[:n_data], batch_size=n_data, display=10, k=50) print('amortized VAE', VAE_train) print('amortized IW', IW_train) print() AIS_train = test_ais(model=model, data_x=train_x[:n_data], batch_size=n_data, display=2, k=50, n_intermediate_dists=500) print('AIS_train', AIS_train) print() print() print('AIS_train', AIS_train) # print() print('opt vae flex', np.mean(vaes_flex)) # print() print('opt vae', np.mean(vaes)) # print() print('amortized VAE', VAE_train) print()
IW_test = test(model=model, data_x=test_x, batch_size=batch_size_IW, display=10, k=k_IW) print('IW_test', IW_test) with open(experiment_log, "a") as myfile: myfile.write('IW_test ' + str(IW_test) + '\n') myfile.write('time' + str(time.time() - start_time) + '\n\n') iw_test_list.append(IW_test) print('\nTesting with AIS, Train set, B' + str(batch_size_AIS) + ' k' + str(k_AIS) + ' intermediates' + str(n_intermediate_dists)) AIS_train = test_ais(model=model, data_x=train_x, batch_size=batch_size_AIS, display=2, k=k_AIS, n_intermediate_dists=n_intermediate_dists) print('AIS_train', AIS_train) with open(experiment_log, "a") as myfile: myfile.write('AIS_train ' + str(AIS_train) + '\n') myfile.write('time' + str(time.time() - start_time) + '\n\n') ais_train_list.append(AIS_train) print('\nTesting with AIS, Test set, B' + str(batch_size_AIS) + ' k' + str(k_AIS) + ' intermediates' + str(n_intermediate_dists)) AIS_test = test_ais(model=model, data_x=test_x, batch_size=batch_size_AIS, display=2, k=k_AIS,
print ('IW_train', IW_train) with open(experiment_log, "a") as myfile: myfile.write('IW_train '+ str(IW_train) +'\n') myfile.write('time'+str(time.time()-start_time)+'\n\n') print('\nTesting with IW, Test set, B'+str(batch_size_IW)+' k'+str(k_IW)) IW_test = test(model=model, data_x=test_x, batch_size=batch_size_IW, display=10, k=k_IW) print ('IW_test', IW_test) with open(experiment_log, "a") as myfile: myfile.write('IW_test '+ str(IW_test) +'\n') myfile.write('time'+str(time.time()-start_time)+'\n\n') print('\nTesting with AIS, Train set, B'+str(batch_size_AIS)+' k'+str(k_AIS)+' intermediates'+str(n_intermediate_dists)) AIS_train = test_ais(model=model, data_x=train_x, batch_size=batch_size_AIS, display=2, k=k_AIS, n_intermediate_dists=n_intermediate_dists) print ('AIS_train', AIS_train) with open(experiment_log, "a") as myfile: myfile.write('AIS_train '+ str(AIS_train) +'\n') myfile.write('time'+str(time.time()-start_time)+'\n\n') print('\nTesting with AIS, Test set, B'+str(batch_size_AIS)+' k'+str(k_AIS)+' intermediates'+str(n_intermediate_dists)) AIS_test = test_ais(model=model, data_x=test_x, batch_size=batch_size_AIS, display=2, k=k_AIS, n_intermediate_dists=n_intermediate_dists) print ('AIS_test', AIS_test) with open(experiment_log, "a") as myfile: myfile.write('AIS_test '+ str(AIS_test) +'\n\n') myfile.write('time'+str(time.time()-start_time)+'\n\n') # # log results
batch_size=batch_size, display=100, k=k_IW) print('\nTesting with IW, Test set, B' + str(batch_size) + ' k' + str(k_IW)) model.test(data_x=test_x, batch_size=batch_size, display=100, k=k_IW) if eval_AIS: k_AIS = 10 batch_size = 1000 n_intermediate_dists = 500 print('\nTesting with AIS, Train set[:10000], B' + str(batch_size) + ' k' + str(k_AIS) + ' intermediates' + str(n_intermediate_dists)) LL_ais_train = test_ais(model, data_x=train_x[:10000], batch_size=batch_size, display=1, k=k_AIS, n_intermediate_dists=n_intermediate_dists) print('\nTesting with AIS, Test set, B' + str(batch_size) + ' k' + str(k_AIS) + ' intermediates' + str(n_intermediate_dists)) LL_ais_test = test_ais(model, data_x=test_x, batch_size=batch_size, display=1, k=k_AIS, n_intermediate_dists=n_intermediate_dists)
k_IW = 5000 batch_size = 20 print('\nTesting with IW, Train set[:10000], B'+str(batch_size)+' k'+str(k_IW)) model.test(data_x=train_x[:10000], batch_size=batch_size, display=100, k=k_IW) print('\nTesting with IW, Test set, B'+str(batch_size)+' k'+str(k_IW)) model.test(data_x=test_x, batch_size=batch_size, display=100, k=k_IW) if eval_AIS: k_AIS = 10 batch_size = 1000 n_intermediate_dists = 500 print('\nTesting with AIS, Train set[:10000], B'+str(batch_size)+' k'+str(k_AIS)+' intermediates'+str(n_intermediate_dists)) LL_ais_train = test_ais(model, data_x=train_x[:10000], batch_size=batch_size, display=1, k=k_AIS, n_intermediate_dists=n_intermediate_dists) print('\nTesting with AIS, Test set, B'+str(batch_size)+' k'+str(k_AIS)+' intermediates'+str(n_intermediate_dists)) LL_ais_test = test_ais(model, data_x=test_x, batch_size=batch_size, display=1, k=k_AIS, n_intermediate_dists=n_intermediate_dists)