示例#1
0
def random_gaussian(size, miu=0, sigma=8, epsilon=0, seed=None):
    """Generate random array with absolution value obeys gaussian distribution."""
    random_data_disk_path = None
    if os.environ.get("RANDOM_DATA_DISK_PATH") is not None:
        random_data_disk_path = os.environ.get(
            "RANDOM_DATA_DISK_PATH") + "/random_data_%s_%s.bin" % (str(miu),
                                                                   str(sigma))

    if random_data_disk_path is None or (
            not os.path.exists(random_data_disk_path)):
        if sigma <= 0:
            sys.stderr.write(
                "Error: Expect positive sigmal for gaussian distribution. but get %f\n"
                % sigma)
            sys.exit(1)
        size_c = 1
        for x in size:
            size_c = size_c * x

        if seed is None:
            seed_ = []
            for i in range(RANDOM_SEED_NUM):
                now = int(time.time() % 10000 * 10000) + random.randint(i, 100)
                seed_.append(now)
        else:
            seed_ = [seed] * RANDOM_SEED_NUM
        logging.debug("random_gaussian seeds: {}".format(seed_))
        # In the profiling scenario, when a new process is used to run test cases, data generated by multiple processes
        # stops responding. To locate the fault, please set this parameter gen_data_multi_process to False.
        gen_data_multi_process = not bool(get_profiling_mode())
        if gen_data_multi_process:
            with Pool(processes=8) as pool:
                ret = np.array(
                    pool.starmap(
                        func,
                        zip(repeat(size_c), repeat(miu), repeat(sigma),
                            seed_)))
        else:
            numbers = list()
            for s in seed_:
                numbers.extend(func(size_c, miu, sigma, s))
            ret = np.array(numbers)
        ret = ret.flatten()
        return ret[:size_c].reshape(size) + epsilon

    data_len = functools.reduce(lambda x, y: x * y, size)
    data_pool = np.fromfile(random_data_disk_path)
    if data_len % len(data_pool) != 0:
        copy_num = (data_len // len(data_pool)) + 1
    else:
        copy_num = data_len // len(data_pool)
    data_copy = np.copy(data_pool)
    data_copy_list = []
    for _ in range(copy_num):
        np.random.shuffle(data_copy)
        data_copy_list.append(data_copy)
    data_pool = np.concatenate(tuple(data_copy_list), axis=0)
    return data_pool[0:data_len].reshape(size) + epsilon
示例#2
0
文件: job.py 项目: RyanWhb/akg
def launch_json(debug_mode: bool = True, save_res: bool = False, json_input_dir=""):
    """composite json tuning launch"""
    iter_times = [3, 3, 3] if debug_mode else [80, 160, 320]
    json_dir = json_load.format(json_input_dir)
    files = os.listdir(json_dir)
    for input_file in files:
        with open(json_dir + '/' + input_file, 'r') as f:
            json_input = f.read()
        json_content = json.loads(json_input)
        for input_desc in json_content["input_desc"]:
            if input_desc[0]["shape"] == []:
                input_desc[0]["shape"] = [1]
        json_input = json.dumps(json_content)
        space_res = composite.get_tiling_space(json_input, 2)
        index_table = space_res['index']
        tiling_spaces = space_res['tuning_space']
        if not tiling_spaces:
            raise RuntimeError('empty tiling spaces')
        dim_names = ['tiling_' + str(i) for i in range(len(tiling_spaces[0]))]
        input_type = namedtuple("json", dim_names)
        space = ListConfigSpace(input_type)
        for tiling_space in tiling_spaces:
            config = input_type(*tiling_space)
            space.add(config)
        key = json_content["op"]
        input_for_mod, expect = gen_data(op_type="json", op_desc=json_input)

        print('space size:', space.length)
        print('index table:', index_table)

        output_para = None  # this is for multi-output
        if len(json_content["output_desc"]) > 1:
            output_para = []
            for i in range(len(json_content["output_desc"])):
                output_para.append(i - len(json_content["output_desc"]))
        runner = KernelRunner(op_type="json", op_desc=json_input, index_table=index_table, input_data=input_for_mod,
                            expect=expect, mod_output_param=output_para, timeout=180, repeat_times=1)

        # we can only get a valid tiling, or accurate get cycles
        is_truly_profiling = utils.get_profiling_mode()

        # available device numbers, normally is 8 or 1
        available_device_numbers = utils.get_available_devices_num()

        tuner = ModelBasedTuner(runner, index_table, space,
                                n_parallel=available_device_numbers if is_truly_profiling else 1,
                                plan_size=64, pre_model=None)
        least_try_times = iter_times[0 if space.length < 10 ** 4 else 1 if space.length < 10 ** 5 else 2]
        tuner.tune(least_try_times, output_file="json.log")

        print_tuning_result("json", space, index_table, tuner, key)

        if save_res:
            save_tuning_result(key, "json", None, index_table, tuner)
示例#3
0
文件: job.py 项目: RyanWhb/akg
def jobs(op_type: str = 'add', desc=None, debug_mode: bool = True,
         save_res: bool = False, insert_key='', conf_of_set_dim=""):
    """AutoTuning jobs"""
    iter_times = [3, 3, 3] if debug_mode else [80, 160, 320]
    index_table, space, key, expect, input_for_mod = get_space(op_type, desc)
    print('space size:', space.length)
    print('index table:', index_table)
    key = key if insert_key == '' else insert_key

    # filter already tuned shape
    if isinstance(conf_of_set_dim, dict) and key in conf_of_set_dim.keys():
        if isinstance(conf_of_set_dim[key], (list, tuple)) and conf_of_set_dim[key]:
            return

        if isinstance(conf_of_set_dim[key], dict):
            return

    output_para = None  # this is for multi-output
    if isinstance(input_for_mod, dict):
        input_for_mod, output_para = input_for_mod['args'], input_for_mod['outputs']
    runner = KernelRunner(op_type, desc, index_table, input_data=input_for_mod,
                          expect=expect, mod_output_param=output_para, timeout=180, repeat_times=1)

    # we can only get a valid tiling, or accurate get cycles
    is_truly_profiling = utils.get_profiling_mode()

    # available device numbers, normally is 8 or 1
    available_device_numbers = utils.get_available_devices_num()

    tuner = ModelBasedTuner(runner, index_table, space,
                            n_parallel=available_device_numbers if is_truly_profiling else 1,
                            plan_size=64, pre_model=None)
    least_try_times = iter_times[0 if space.length < 10 ** 4 else 1 if space.length < 10 ** 5 else 2]
    tuner.tune(least_try_times, output_file=op_type + ".log")

    print_tuning_result(op_type, space, index_table, tuner, key)

    if save_res:
        save_tuning_result(key, op_type, desc, index_table, tuner)
示例#4
0
文件: job.py 项目: wxyhv/akg
def launch_json(debug_mode: bool = True,
                save_res: bool = False,
                json_dir="",
                repo_path="",
                all_space=False,
                skip_exist=True,
                extra_tune=False,
                self_attrs=[],
                tuning_attrs=[]):
    """composite json tuning launch"""
    subprocess.run("mkdir -p res/", shell=True)
    iter_times = [3, 3, 3] if debug_mode else [80, 160, 320]
    files = os.listdir(json_dir)
    with open(repo_path, 'r') as f:
        repo = json.loads(f.read())
    for input_file in files:
        print("----Start tuning for ", input_file)
        with open(json_dir + '/' + input_file, 'r') as f:
            json_input = f.read()
        json_content = json.loads(json_input)
        for input_desc in json_content["input_desc"]:
            if input_desc[0]["shape"] == []:
                input_desc[0]["shape"] = [1]
        json_input = json.dumps(json_content)

        # skip tuning for info in repo
        if skip_exist:
            compute, shape, dtype = generate_trait(json_content)
            if get_repo(repo, [compute, shape, dtype]):
                print("Info for %s already exists" % input_file)
                print("ops are ", str(compute))
                print("shape is ", str(shape))
                print("dtype is ", str(dtype))
                with open('res/skip_file.txt', 'a') as fe:
                    fe.write(input_file)
                    fe.write("\n")
                continue

        # generate tuning space
        if not extra_tune:
            time_start_get_space = time.time()
            with Manager() as manager:
                space_dict = manager.dict()
                p = Process(target=get_json_space,
                            args=(json_input, space_dict))
                p.start()
                p.join(600)
                if 'res' not in space_dict:
                    with open('res/error_space_list.txt', 'a') as fe:
                        fe.write(input_file)
                        fe.write("\n")
                    continue
                space_res = space_dict['res']
            time_end_get_space = time.time()
            print("get space time: ",
                  time_end_get_space - time_start_get_space)
            index_table = space_res['index']
            tiling_spaces = space_res['tuning_space']
            if not isinstance(tiling_spaces, list):
                with open('res/empty_space_list.txt', 'a') as fe:
                    fe.write(input_file)
                    fe.write("\n")
                continue
            dim_names = [
                'tiling_' + str(i) for i in range(len(tiling_spaces[0]))
            ]
            use_tuning_attrs = len(tiling_spaces) < 10**5
            if tuning_attrs and use_tuning_attrs:
                dim_names.extend(tuning_attrs)
            input_type = namedtuple("json", dim_names)
            space = ListConfigSpace(input_type)
            if tuning_attrs and use_tuning_attrs:
                attr_options = gen_bool_list(tuning_attrs)
                for tiling_space in tiling_spaces:
                    for attr_option in attr_options:
                        tmp = tiling_space[:]
                        tmp.extend(attr_option)
                        config = input_type(*tmp)
                        space.add(config)
            else:
                for tiling_space in tiling_spaces:
                    config = input_type(*tiling_space)
                    space.add(config)
        else:
            index_table = []
            pre_lists = gen_bool_list(self_attrs)
            pre_input_type = namedtuple("extra_tune", self_attrs)
            space = ListConfigSpace(pre_input_type)
            for item in pre_lists:
                config = pre_input_type(*item)
                space.add(config)

        key = json_content["op"]
        try:
            input_for_mod, expect = gen_data(op_type="json",
                                             op_desc=json_input)
        except BaseException as e:
            logger.debug("gen numpy data from [%s] failed: %s", input_file,
                         str(e))
            with open('res/error_gen_data_list.txt', 'a') as fe:
                fe.write(input_file)
                fe.write(": ")
                fe.write(str(e))
                fe.write("\n")
            continue
        print('space size:', space.length)
        print('index table:', index_table)

        output_para = None  # this is for multi-output
        if len(json_content["output_desc"]) > 1:
            output_para = []
            for i in range(len(json_content["output_desc"])):
                output_para.append(i - len(json_content["output_desc"]))
        runner = KernelRunner(op_type="json",
                              op_desc=json_input,
                              index_table=index_table,
                              self_attrs=self_attrs,
                              input_data=input_for_mod,
                              expect=expect,
                              mod_output_param=output_para,
                              timeout=180,
                              repeat_times=1)

        # we can only get a valid tiling, or accurate get cycles
        is_truly_profiling = utils.get_profiling_mode(
        ) or os.environ['RUNTIME_MODE'] == "gpu"

        # available device numbers, normally is 8 or 1
        available_device_numbers = utils.get_available_devices_num()

        if all_space:
            tuner = Tuner(runner,
                          index_table,
                          space,
                          n_parallel=available_device_numbers)
            least_try_times = space.length
        else:
            tuner = ModelBasedTuner(runner,
                                    index_table,
                                    space,
                                    n_parallel=available_device_numbers
                                    if is_truly_profiling else 1,
                                    plan_size=64,
                                    pre_model=None)
            least_try_times = iter_times[0 if space.length < 10**4 else
                                         1 if space.length < 10**5 else 2]
        tuner.tune(least_try_times, output_file="json.log")

        print_tuning_result("json", space, index_table, tuner, key)

        if save_res:
            if extra_tune:
                save_tuning_result(key, "extra_tune", json_content,
                                   index_table, tuner, repo_path)
            else:
                save_tuning_result(key, "json", json_content, index_table,
                                   tuner, repo_path)