def get_china_yearly_gdp(): """ 获取中国年度GDP数据, 数据区间从20110120-至今 :return: pandas.Series 2011-01-20 9.8 2011-04-15 9.7 2011-07-13 9.5 2011-10-18 9.1 2012-01-17 8.9 2012-04-13 8.1 2012-07-13 7.6 2012-10-18 7.4 2013-01-18 7.9 2013-04-15 7.7 2013-07-15 7.5 2013-10-18 7.8 2014-01-20 7.7 2014-04-16 7.4 2014-07-16 7.5 2014-10-21 7.3 2015-01-20 7.3 2015-04-15 7 2015-07-15 7 2015-10-19 6.9 2016-01-19 6.8 2016-04-15 6.7 2016-07-15 6.7 2016-10-19 6.7 2017-01-20 6.8 2017-04-17 6.9 2017-07-17 6.9 2017-10-19 6.8 2018-01-18 6.8 2018-04-17 6.8 2018-07-16 6.7 2018-10-19 6.5 2019-01-21 6.4 2019-04-17 6.4 2019-07-15 6.2 2019-10-18 6 """ t = time.time() res = requests.get( JS_CHINA_GDP_YEARLY_URL.format( str(int(round(t * 1000))), str(int(round(t * 1000)) + 90) ) ) json_data = json.loads(res.text[res.text.find("{") : res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["中国GDP年率报告"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(%)"] temp_df.name = "gdp" return temp_df
def macro_china_gdp_yearly(): """ 中国年度GDP数据, 数据区间从20110120-至今 https://datacenter.jin10.com/reportType/dc_chinese_gdp_yoy :return: pandas.Series """ t = time.time() res = requests.get( JS_CHINA_GDP_YEARLY_URL.format(str(int(round(t * 1000))), str(int(round(t * 1000)) + 90))) json_data = json.loads(res.text[res.text.find("{"):res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["中国GDP年率报告"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(%)"] temp_df.name = "gdp" return temp_df