def get_china_yearly_pmi(): """ 获取中国年度PMI数据, 数据区间从20050201-至今 :return: pandas.Series 2005-02-01 54.7 2005-03-01 54.5 2005-04-01 57.9 2005-05-01 56.7 2005-06-01 52.9 ... 2019-06-30 49.4 2019-07-31 49.7 2019-08-31 49.5 2019-09-30 49.5 2019-10-31 0 """ t = time.time() res = requests.get( JS_CHINA_PMI_YEARLY_URL.format( str(int(round(t * 1000))), str(int(round(t * 1000)) + 90) ) ) json_data = json.loads(res.text[res.text.find("{") : res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["中国官方制造业PMI报告"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值"] temp_df.name = "pmi" return temp_df
def macro_china_pmi_yearly(): """ 中国年度PMI数据, 数据区间从20050201-至今 https://datacenter.jin10.com/reportType/dc_chinese_manufacturing_pmi https://cdn.jin10.com/dc/reports/dc_chinese_manufacturing_pmi_all.js?v=1578817858 :return: pandas.Series """ t = time.time() res = requests.get( JS_CHINA_PMI_YEARLY_URL.format(str(int(round(t * 1000))), str(int(round(t * 1000)) + 90))) json_data = json.loads(res.text[res.text.find("{"):res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["中国官方制造业PMI报告"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值"] temp_df.name = "pmi" return temp_df