def stock_zh_kcb_daily(symbol="sh688008", factor=""): """ 从新浪财经-A股获取某个股票的历史行情数据, 大量抓取容易封IP :param symbol: str e.g., sh600000 :param factor: str 默认为空, 不复权; qfq, 前复权因子; hfq, 后复权因子; :return: pandas.DataFrame 不复权数据 日期 开盘价 最高价 最低价 收盘价 成交 盘后量 盘后额 0 2019-07-22 91.300 97.200 66.300 74.920 58330685 40778 3055088 1 2019-07-23 70.020 78.880 70.000 74.130 23906020 43909 3254974 2 2019-07-24 74.130 76.550 72.500 75.880 21608530 23149 1756546 3 2019-07-25 75.000 79.980 74.600 78.000 24626920 66921 5219838 4 2019-07-26 76.780 76.780 70.300 71.680 16831530 49106 3519918 .. ... ... ... ... ... ... ... ... 67 2019-10-31 59.790 60.500 57.800 58.290 2886407 3846 224183 68 2019-11-01 57.900 59.960 57.600 59.250 2246059 0 0 69 2019-11-04 60.040 61.880 60.040 61.740 3945106 1782 110021 70 2019-11-05 61.100 62.780 60.850 62.160 4187105 400 24864 71 2019-11-06 62.320 62.620 60.900 61.130 2331354 1300 79469 后复权因子 date hfq_factor 0 2019-07-22 1.0000000000000000 1 1900-01-01 1.0000000000000000 前复权因子 date qfq_factor 0 2019-07-22 1.0000000000000000 1 1900-01-01 1.0000000000000000 """ res = requests.get( zh_sina_kcb_stock_hist_url.format( symbol, datetime.datetime.now().strftime("%Y_%m_%d"), symbol)) data_json = demjson.decode( res.text[res.text.find("["):res.text.rfind("]") + 1]) data_df = pd.DataFrame(data_json) data_df.columns = ["日期", "开盘价", "最高价", "最低价", "收盘价", "成交", "盘后量", "盘后额"] if not factor: return data_df if factor == "hfq": res = requests.get(zh_sina_kcb_stock_hfq_url.format(symbol)) hfq_factor_df = pd.DataFrame( eval(res.text.split("=")[1].split("\n")[0])['data']) hfq_factor_df.columns = ["date", "hfq_factor"] return hfq_factor_df if factor == "qfq": res = requests.get(zh_sina_kcb_stock_qfq_url.format(symbol)) qfq_factor_df = pd.DataFrame( eval(res.text.split("=")[1].split("\n")[0])['data']) qfq_factor_df.columns = ["date", "qfq_factor"] return qfq_factor_df
def stock_zh_kcb_daily(symbol="sh688399", adjust=""): """ 从新浪财经-A股获取某个股票的历史行情数据, 大量抓取容易封IP :param symbol: str e.g., sh600000 :param adjust: str 默认为空, 不复权; qfq, 前复权因子; hfq, 后复权因子; :return: pandas.DataFrame 不复权数据 日期 开盘价 最高价 最低价 收盘价 成交 盘后量 盘后额 0 2019-07-22 91.300 97.200 66.300 74.920 58330685 40778 3055088 1 2019-07-23 70.020 78.880 70.000 74.130 23906020 43909 3254974 2 2019-07-24 74.130 76.550 72.500 75.880 21608530 23149 1756546 3 2019-07-25 75.000 79.980 74.600 78.000 24626920 66921 5219838 4 2019-07-26 76.780 76.780 70.300 71.680 16831530 49106 3519918 .. ... ... ... ... ... ... ... ... 67 2019-10-31 59.790 60.500 57.800 58.290 2886407 3846 224183 68 2019-11-01 57.900 59.960 57.600 59.250 2246059 0 0 69 2019-11-04 60.040 61.880 60.040 61.740 3945106 1782 110021 70 2019-11-05 61.100 62.780 60.850 62.160 4187105 400 24864 71 2019-11-06 62.320 62.620 60.900 61.130 2331354 1300 79469 后复权因子 date hfq_factor 0 2019-07-22 1.0000000000000000 1 1900-01-01 1.0000000000000000 前复权因子 date qfq_factor 0 2019-07-22 1.0000000000000000 1 1900-01-01 1.0000000000000000 """ res = requests.get( zh_sina_kcb_stock_hist_url.format( symbol, datetime.datetime.now().strftime("%Y_%m_%d"), symbol)) data_json = demjson.decode( res.text[res.text.find("["):res.text.rfind("]") + 1]) data_df = pd.DataFrame(data_json) data_df.index = pd.to_datetime(data_df["d"]) data_df.index.name = "date" del data_df["d"] r = requests.get(zh_sina_kcb_stock_amount_url.format(symbol, symbol)) amount_data_json = demjson.decode( r.text[r.text.find("["):r.text.rfind("]") + 1]) amount_data_df = pd.DataFrame(amount_data_json) amount_data_df.index = pd.to_datetime(amount_data_df.date) del amount_data_df["date"] temp_df = pd.merge(data_df, amount_data_df, left_index=True, right_index=True, how="left") temp_df.fillna(method="ffill", inplace=True) temp_df = temp_df.astype(float) temp_df["amount"] = temp_df["amount"] * 10000 temp_df["turnover"] = temp_df["v"] / temp_df["amount"] temp_df.columns = [ "open", "high", "low", "close", "volume", "after_volume", "after_amount", "outstanding_share", "turnover" ] if not adjust: return temp_df if adjust == "hfq": res = requests.get(zh_sina_kcb_stock_hfq_url.format(symbol)) hfq_factor_df = pd.DataFrame( eval(res.text.split("=")[1].split("\n")[0])['data']) hfq_factor_df.columns = ["date", "hfq_factor"] hfq_factor_df.index = pd.to_datetime(hfq_factor_df.date) del hfq_factor_df["date"] temp_df = pd.merge(temp_df, hfq_factor_df, left_index=True, right_index=True, how="left") temp_df.fillna(method="ffill", inplace=True) temp_df = temp_df.astype(float) temp_df["open"] = temp_df["open"] * temp_df["hfq_factor"] temp_df["high"] = temp_df["high"] * temp_df["hfq_factor"] temp_df["close"] = temp_df["close"] * temp_df["hfq_factor"] temp_df["low"] = temp_df["low"] * temp_df["hfq_factor"] return temp_df if adjust == "qfq": res = requests.get(zh_sina_kcb_stock_qfq_url.format(symbol)) qfq_factor_df = pd.DataFrame( eval(res.text.split("=")[1].split("\n")[0])['data']) qfq_factor_df.columns = ["date", "qfq_factor"] qfq_factor_df.index = pd.to_datetime(qfq_factor_df.date) del qfq_factor_df["date"] temp_df = pd.merge(temp_df, qfq_factor_df, left_index=True, right_index=True, how="left") temp_df.fillna(method="ffill", inplace=True) temp_df = temp_df.astype(float) temp_df["open"] = temp_df["open"] / temp_df["qfq_factor"] temp_df["high"] = temp_df["high"] / temp_df["qfq_factor"] temp_df["close"] = temp_df["close"] / temp_df["qfq_factor"] temp_df["low"] = temp_df["low"] / temp_df["qfq_factor"] return temp_df if adjust == "hfq-factor": res = requests.get(zh_sina_kcb_stock_hfq_url.format(symbol)) hfq_factor_df = pd.DataFrame( eval(res.text.split("=")[1].split("\n")[0])['data']) hfq_factor_df.columns = ["date", "hfq_factor"] hfq_factor_df.index = pd.to_datetime(hfq_factor_df.date) del hfq_factor_df["date"] return hfq_factor_df if adjust == "qfq-factor": res = requests.get(zh_sina_kcb_stock_qfq_url.format(symbol)) qfq_factor_df = pd.DataFrame( eval(res.text.split("=")[1].split("\n")[0])['data']) qfq_factor_df.columns = ["date", "qfq_factor"] qfq_factor_df.index = pd.to_datetime(qfq_factor_df.date) del qfq_factor_df["date"] return qfq_factor_df
def stock_zh_kcb_daily(symbol: str = "sh688399", adjust: str = "") -> pd.DataFrame: """ 新浪财经-科创板股票的历史行情数据, 大量抓取容易封IP https://finance.sina.com.cn/realstock/company/sh688005/nc.shtml :param symbol: 股票代码; 带市场标识的股票代码 :type symbol: str :param adjust: 默认不复权的数据; qfq: 返回前复权后的数据; hfq: 返回后复权后的数据; hfq-factor: 返回后复权因子; hfq-factor: 返回前复权因子 :type adjust: str :return: 科创板股票的历史行情数据 :rtype: pandas.DataFrame """ res = requests.get( zh_sina_kcb_stock_hist_url.format( symbol, datetime.datetime.now().strftime("%Y_%m_%d"), symbol)) data_json = demjson.decode( res.text[res.text.find("["):res.text.rfind("]") + 1]) data_df = pd.DataFrame(data_json) data_df.index = pd.to_datetime(data_df["d"]) data_df.index.name = "date" del data_df["d"] r = requests.get(zh_sina_kcb_stock_amount_url.format(symbol, symbol)) amount_data_json = demjson.decode( r.text[r.text.find("["):r.text.rfind("]") + 1]) amount_data_df = pd.DataFrame(amount_data_json) amount_data_df.index = pd.to_datetime(amount_data_df.date) del amount_data_df["date"] temp_df = pd.merge(data_df, amount_data_df, left_index=True, right_index=True, how="left") temp_df.fillna(method="ffill", inplace=True) temp_df = temp_df.astype(float) temp_df["amount"] = temp_df["amount"] * 10000 temp_df["turnover"] = temp_df["v"] / temp_df["amount"] temp_df.columns = [ "open", "high", "low", "close", "volume", "after_volume", "after_amount", "outstanding_share", "turnover", ] if not adjust: temp_df.reset_index(inplace=True) temp_df['date'] = pd.to_datetime(temp_df['date']).dt.date return temp_df if adjust == "hfq": res = requests.get(zh_sina_kcb_stock_hfq_url.format(symbol)) hfq_factor_df = pd.DataFrame( eval(res.text.split("=")[1].split("\n")[0])["data"]) hfq_factor_df.columns = ["date", "hfq_factor"] hfq_factor_df.index = pd.to_datetime(hfq_factor_df.date) del hfq_factor_df["date"] temp_df = pd.merge(temp_df, hfq_factor_df, left_index=True, right_index=True, how="left") temp_df.fillna(method="ffill", inplace=True) temp_df = temp_df.astype(float) temp_df["open"] = temp_df["open"] * temp_df["hfq_factor"] temp_df["high"] = temp_df["high"] * temp_df["hfq_factor"] temp_df["close"] = temp_df["close"] * temp_df["hfq_factor"] temp_df["low"] = temp_df["low"] * temp_df["hfq_factor"] temp_df = temp_df.iloc[:, :-1] temp_df.reset_index(inplace=True) temp_df['date'] = pd.to_datetime(temp_df['date']).dt.date return temp_df if adjust == "qfq": res = requests.get(zh_sina_kcb_stock_qfq_url.format(symbol)) qfq_factor_df = pd.DataFrame( eval(res.text.split("=")[1].split("\n")[0])["data"]) qfq_factor_df.columns = ["date", "qfq_factor"] qfq_factor_df.index = pd.to_datetime(qfq_factor_df.date) del qfq_factor_df["date"] temp_df = pd.merge(temp_df, qfq_factor_df, left_index=True, right_index=True, how="left") temp_df.fillna(method="ffill", inplace=True) temp_df = temp_df.astype(float) temp_df["open"] = temp_df["open"] / temp_df["qfq_factor"] temp_df["high"] = temp_df["high"] / temp_df["qfq_factor"] temp_df["close"] = temp_df["close"] / temp_df["qfq_factor"] temp_df["low"] = temp_df["low"] / temp_df["qfq_factor"] temp_df = temp_df.iloc[:, :-1] temp_df.reset_index(inplace=True) temp_df['date'] = pd.to_datetime(temp_df['date']).dt.date return temp_df if adjust == "hfq-factor": res = requests.get(zh_sina_kcb_stock_hfq_url.format(symbol)) hfq_factor_df = pd.DataFrame( eval(res.text.split("=")[1].split("\n")[0])["data"]) hfq_factor_df.columns = ["date", "hfq_factor"] hfq_factor_df.index = pd.to_datetime(hfq_factor_df.date) del hfq_factor_df["date"] hfq_factor_df.reset_index(inplace=True) hfq_factor_df['date'] = pd.to_datetime(hfq_factor_df['date']).dt.date return hfq_factor_df if adjust == "qfq-factor": res = requests.get(zh_sina_kcb_stock_qfq_url.format(symbol)) qfq_factor_df = pd.DataFrame( eval(res.text.split("=")[1].split("\n")[0])["data"]) qfq_factor_df.columns = ["date", "qfq_factor"] qfq_factor_df.index = pd.to_datetime(qfq_factor_df.date) del qfq_factor_df["date"] qfq_factor_df.reset_index(inplace=True) qfq_factor_df['date'] = pd.to_datetime(qfq_factor_df['date']).dt.date return qfq_factor_df