示例#1
0
def stock_em_gpzy_profile() -> pd.DataFrame:
    """
    东方财富网-数据中心-特色数据-股权质押-股权质押市场概况
    http://data.eastmoney.com/gpzy/marketProfile.aspx
    :return: 股权质押市场概况
    :rtype: pandas.DataFrame
    """
    url = "http://dcfm.eastmoney.com/EM_MutiSvcExpandInterface/api/js/get"
    params = {
        "type": "ZD_SUM",
        "token": "70f12f2f4f091e459a279469fe49eca5",
        "cmd": "",
        "st": "tdate",
        "sr": "-1",
        "p": "1",
        "ps": "5000",
        "js": "var zvxnZOnT={pages:(tp),data:(x),font:(font)}",
        "rt": "52583914",
    }
    temp_df = pd.DataFrame()
    res = requests.get(url, params=params)
    data_text = res.text
    data_json = demjson.decode(data_text[data_text.find("={") + 1 :])
    map_dict = dict(
        zip(
            pd.DataFrame(data_json["font"]["FontMapping"])["code"],
            pd.DataFrame(data_json["font"]["FontMapping"])["value"],
        )
    )
    for key, value in map_dict.items():
        data_text = data_text.replace(key, str(value))
    data_json = demjson.decode(data_text[data_text.find("={") + 1 :])
    temp_df = temp_df.append(pd.DataFrame(data_json["data"]), ignore_index=True)
    temp_df.columns = [
        "交易日期",
        "sc_zsz",
        "平均质押比例(%)",
        "涨跌幅",
        "A股质押总比例(%)",
        "质押公司数量",
        "质押笔数",
        "质押总股数(股)",
        "质押总市值(元)",
        "沪深300指数",
    ]
    temp_df = temp_df[
        [
            "交易日期",
            "平均质押比例(%)",
            "涨跌幅",
            "A股质押总比例(%)",
            "质押公司数量",
            "质押笔数",
            "质押总股数(股)",
            "质押总市值(元)",
            "沪深300指数",
        ]
    ]
    temp_df["交易日期"] = pd.to_datetime(temp_df["交易日期"])
    return temp_df
示例#2
0
def _get_tx_start_year(symbol: str = "sh000919") -> pd.DataFrame:
    """
    腾讯证券-获取所有股票数据的第一天, 注意这个数据是腾讯证券的历史数据第一天
    http://gu.qq.com/sh000919/zs
    :param symbol: 带市场标识的股票代码
    :type symbol: str
    :return: 开始日期
    :rtype: pandas.DataFrame
    """
    url = "http://web.ifzq.gtimg.cn/other/klineweb/klineWeb/weekTrends"
    params = {
        "code": symbol,
        "type": "qfq",
        "_var": "trend_qfq",
        "r": "0.3506048543943414",
    }
    r = requests.get(url, params=params)
    data_text = r.text
    if not demjson.decode(data_text[data_text.find("={") + 1 :])["data"]:
        url = "https://proxy.finance.qq.com/ifzqgtimg/appstock/app/newfqkline/get"
        params = {
            "_var": "kline_dayqfq",
            "param": f"{symbol},day,,,320,qfq",
            "r": "0.751892490072597",
        }
        r = requests.get(url, params=params)
        data_text = r.text
        start_date = demjson.decode(data_text[data_text.find("={") + 1 :])["data"][
            symbol
        ]["day"][0][0]
        return start_date
    start_date = demjson.decode(data_text[data_text.find("={") + 1 :])["data"][0][0]
    return start_date
示例#3
0
def stock_em_gpzy_industry_data() -> pd.DataFrame:
    """
    东方财富网-数据中心-特色数据-股权质押-上市公司质押比例-行业数据
    http://data.eastmoney.com/gpzy/industryData.aspx
    :return: pandas.DataFrame
    """
    url = "http://dcfm.eastmoney.com/EM_MutiSvcExpandInterface/api/js/get"
    page_num = _get_page_num_gpzy_industry_data()
    temp_df = pd.DataFrame()
    for page in range(1, page_num + 1):
        print(f"一共{page_num}页, 正在下载第{page}页")
        params = {
            "type": "ZD_HY_SUM",
            "token": "70f12f2f4f091e459a279469fe49eca5",
            "cmd": "",
            "st": "amtshareratio_pj",
            "sr": "-1",
            "p": str(page),
            "ps": "5000",
            "js": "var SIqThurI={pages:(tp),data:(x),font:(font)}",
            "rt": "52584617",
        }
        res = requests.get(url, params=params)
        data_text = res.text
        data_json = demjson.decode(data_text[data_text.find("={") + 1:])
        map_dict = dict(
            zip(
                pd.DataFrame(data_json["font"]["FontMapping"])["code"],
                pd.DataFrame(data_json["font"]["FontMapping"])["value"],
            ))
        for key, value in map_dict.items():
            data_text = data_text.replace(key, str(value))
        data_json = demjson.decode(data_text[data_text.find("={") + 1:])
        temp_df = temp_df.append(pd.DataFrame(data_json["data"]),
                                 ignore_index=True)
    temp_df.columns = [
        "统计时间",
        "-",
        "行业",
        "平均质押比例(%)",
        "公司家数",
        "质押总笔数",
        "质押总股本",
        "最新质押市值",
    ]
    temp_df = temp_df[[
        "统计时间", "行业", "平均质押比例(%)", "公司家数", "质押总笔数", "质押总股本", "最新质押市值"
    ]]
    temp_df["统计时间"] = pd.to_datetime(temp_df["统计时间"])
    return temp_df
示例#4
0
def macro_australia_retail_rate_monthly() -> pd.DataFrame:
    """
    东方财富-经济数据-澳大利亚-零售销售月率
    http://data.eastmoney.com/cjsj/foreign_5_0.html
    :return: 零售销售月率
    :rtype: pandas.DataFrame
    """
    url = "http://datainterface.eastmoney.com/EM_DataCenter/JS.aspx"
    params = {
        "type": "GJZB",
        "sty": "HKZB",
        "js": "({data:[(x)],pages:(pc)})",
        "p": "1",
        "ps": "2000",
        "mkt": "5",
        "stat": "0",
        "pageNo": "1",
        "pageNum": "1",
        "_": "1625474966006",
    }
    r = requests.get(url, params=params)
    data_text = r.text
    data_json = demjson.decode(data_text[1:-1])
    temp_df = pd.DataFrame([item.split(",") for item in data_json["data"]])
    temp_df.columns = [
        "时间",
        "前值",
        "现值",
        "发布日期",
    ]
    temp_df['时间'] = pd.to_datetime(temp_df['时间']).dt.date
    temp_df["前值"] = pd.to_numeric(temp_df["前值"])
    temp_df["现值"] = pd.to_numeric(temp_df["现值"])
    temp_df['发布日期'] = pd.to_datetime(temp_df['发布日期']).dt.date
    return temp_df
示例#5
0
def macro_china_hk_rate_of_unemployment() -> pd.DataFrame:
    """
    东方财富-经济数据一览-中国香港-失业率
    https://data.eastmoney.com/cjsj/foreign_8_2.html
    :return: 失业率
    :rtype: pandas.DataFrame
    """
    url = "https://datainterface.eastmoney.com/EM_DataCenter/JS.aspx"
    params = {
        "type": "GJZB",
        "sty": "HKZB",
        "js": "({data:[(x)],pages:(pc)})",
        "p": "1",
        "ps": "2000",
        "mkt": "8",
        "stat": "2",
        "pageNo": "1",
        "pageNum": "1",
        "_": "1621332091873",
    }
    r = requests.get(url, params=params)
    data_text = r.text
    data_json = demjson.decode(data_text[1:-1])
    temp_df = pd.DataFrame([item.split(",") for item in data_json["data"]])
    temp_df.columns = [
        "时间",
        "前值",
        "现值",
        "发布日期",
    ]
    temp_df['前值'] = pd.to_numeric(temp_df['前值'])
    temp_df['现值'] = pd.to_numeric(temp_df['现值'])
    temp_df['时间'] = pd.to_datetime(temp_df['时间']).dt.date
    temp_df['发布日期'] = pd.to_datetime(temp_df['发布日期']).dt.date
    return temp_df
示例#6
0
def match_main_contract(symbol: str = "shfe") -> pd.DataFrame:
    """
    指定交易所的所有可以提供数据的合约
    https://finance.sina.com.cn/futuremarket/index.shtml
    :param symbol: choice of {"dce", "czce", "shfe", "cffex"}
    :type symbol: str
    :return: 指定交易所的所有可以提供数据的合约
    :rtype: pandas.DataFrame
    """
    subscribe_list = []
    exchange_symbol_list = zh_subscribe_exchange_symbol(
        symbol).iloc[:, 1].tolist()
    for item in exchange_symbol_list:
        zh_match_main_contract_payload.update({"node": item})
        res = requests.get(zh_match_main_contract_url,
                           params=zh_match_main_contract_payload)
        data_json = demjson.decode(res.text)
        data_df = pd.DataFrame(data_json)
        try:
            main_contract = data_df[
                data_df['name'].str.contains("连续")
                & data_df['symbol'].str.extract(
                    r'([\w])(\d)').iloc[:, 1].str.contains("0")].iloc[0, :3]
            subscribe_list.append(main_contract)
        except:
            # print(item, "无主力连续合约")
            continue
    # print("主力连续合约获取成功")
    temp_df = pd.DataFrame(subscribe_list)
    return temp_df
示例#7
0
def _get_page_num_dxsyl(market: str = "上海主板") -> int:
    """
    东方财富网-数据中心-新股数据-打新收益率-总页数
    http://data.eastmoney.com/xg/xg/dxsyl.html
    :param market: choice of {"上海主板", "创业板", "深圳主板"}
    :type market: str
    :return: 总页数
    :rtype: int
    """
    market_map = {"上海主板": "2", "创业板": "3", "深圳主板": "4"}
    url = "http://datainterface.eastmoney.com/EM_DataCenter/JS.aspx"
    params = {
        "type": "NS",
        "sty": "NSDXSYL",
        "st": "16",
        "sr": "-1",
        "p": "1",
        "ps": "50",
        "js": "var oyfyNYmO={pages:(pc),data:[(x)]}",
        "stat": market_map[market],
        "rt": "52898446",
    }
    res = requests.get(url, params=params)
    data_json = demjson.decode(res.text[res.text.find("={") + 1:])
    return data_json["pages"]
示例#8
0
def sw_index_representation_spot() -> pd.DataFrame:
    """
    申万-市场表征实时行情数据
    http://www.swsindex.com/idx0120.aspx?columnid=8831
    :return: 市场表征实时行情数据
    :rtype: pandas.DataFrame
    """
    url = "http://www.swsindex.com/handler.aspx"
    params = {
        "tablename": "swzs",
        "key": "L1",
        "p": "1",
        "where": "L1 in('801001','801002','801003','801005','801300','801901','801903','801905','801250','801260','801270','801280','802613')",
        "orderby": "",
        "fieldlist": "L1,L2,L3,L4,L5,L6,L7,L8,L11",
        "pagecount": "9",
        "timed": "1632300641756",
    }
    r = requests.get(url, params=params)
    data_json = demjson.decode(r.text)
    temp_df = pd.DataFrame(data_json["root"])
    temp_df.columns = ["指数代码", "指数名称", "昨收盘", "今开盘", "成交额", "最高价", "最低价", "最新价", "成交量"]
    temp_df["昨收盘"] = pd.to_numeric(temp_df["昨收盘"])
    temp_df["今开盘"] = pd.to_numeric(temp_df["今开盘"])
    temp_df["成交额"] = pd.to_numeric(temp_df["成交额"])
    temp_df["最高价"] = pd.to_numeric(temp_df["最高价"])
    temp_df["最低价"] = pd.to_numeric(temp_df["最低价"])
    temp_df["最新价"] = pd.to_numeric(temp_df["最新价"])
    temp_df["成交量"] = pd.to_numeric(temp_df["成交量"])
    return temp_df
示例#9
0
def macro_germany_cpi_yearly() -> pd.DataFrame:
    """
    消费者物价指数年率终值
    http://data.eastmoney.com/cjsj/foreign_1_2.html
    :return: 消费者物价指数年率终值
    :rtype: pandas.DataFrame
    """
    url = "http://datainterface.eastmoney.com/EM_DataCenter/JS.aspx"
    params = {
        "type": "GJZB",
        "sty": "HKZB",
        "js": "({data:[(x)],pages:(pc)})",
        "p": "1",
        "ps": "2000",
        "mkt": "1",
        "stat": "2",
        "pageNo": "1",
        "pageNum": "1",
        "_": "1625474966006",
    }
    r = requests.get(url, params=params)
    data_text = r.text
    data_json = demjson.decode(data_text[1:-1])
    temp_df = pd.DataFrame([item.split(",") for item in data_json["data"]])
    temp_df.columns = [
        "时间",
        "前值",
        "现值",
        "发布日期",
    ]
    temp_df["前值"] = pd.to_numeric(temp_df["前值"])
    temp_df["现值"] = pd.to_numeric(temp_df["现值"])
    return temp_df
示例#10
0
def macro_swiss_gbd_bank_rate():
    """
    东方财富-经济数据-瑞士-央行公布利率决议
    http://data.eastmoney.com/cjsj/foreign_2_5.html
    :return: 央行公布利率决议
    :rtype: pandas.DataFrame
    """
    url = "http://datainterface.eastmoney.com/EM_DataCenter/JS.aspx"
    params = {
        "type": "GJZB",
        "sty": "HKZB",
        "js": "({data:[(x)],pages:(pc)})",
        "p": "1",
        "ps": "2000",
        "mkt": "2",
        "stat": "5",
        'pageNo': '1',
        'pageNum': '1',
        "_": "1625474966006",
    }
    r = requests.get(url, params=params)
    data_text = r.text
    data_json = demjson.decode(data_text[1:-1])
    temp_df = pd.DataFrame([item.split(",") for item in data_json["data"]])
    temp_df.columns = [
        "时间",
        "前值",
        "现值",
        "发布日期",
    ]
    temp_df["前值"] = pd.to_numeric(temp_df["前值"])
    temp_df["现值"] = pd.to_numeric(temp_df["现值"])
    return temp_df
示例#11
0
def zh_subscribe_exchange_symbol(symbol: str = "dce") -> dict:
    """
    交易所具体的可交易品种
    http://vip.stock.finance.sina.com.cn/quotes_service/view/qihuohangqing.html#titlePos_1
    :param symbol: choice of {'czce', 'dce', 'shfe', 'cffex'}
    :type symbol: str
    :return: 交易所具体的可交易品种
    :rtype: dict
    """
    r = requests.get(zh_subscribe_exchange_symbol_url)
    r.encoding = "gbk"
    data_text = r.text
    data_json = demjson.decode(
        data_text[data_text.find("{"):data_text.find("};") + 1])
    if symbol == "czce":
        data_json["czce"].remove("郑州商品交易所")
        return pd.DataFrame(data_json["czce"])
    if symbol == "dce":
        data_json["dce"].remove("大连商品交易所")
        return pd.DataFrame(data_json["dce"])
    if symbol == "shfe":
        data_json["shfe"].remove("上海期货交易所")
        return pd.DataFrame(data_json["shfe"])
    if symbol == "cffex":
        data_json["cffex"].remove("中国金融期货交易所")
        return pd.DataFrame(data_json["cffex"])
示例#12
0
def fund_em_new_found() -> pd.DataFrame:
    """
    基金数据-新发基金-新成立基金
    http://fund.eastmoney.com/data/xinfound.html
    :return: 新成立基金
    :rtype: pandas.DataFrame
    """
    url = "http://fund.eastmoney.com/data/FundNewIssue.aspx"
    params = {
        "t": "xcln",
        "sort": "jzrgq,desc",
        "y": "",
        "page": "1,50000",
        "isbuy": "1",
        "v": "0.4069919776543214",
    }
    r = requests.get(url, params=params)
    data_text = r.text
    data_json = demjson.decode(data_text.strip("var newfunddata="))
    temp_df = pd.DataFrame(data_json["datas"])
    temp_df.columns = [
        "基金代码",
        "基金简称",
        "发行公司",
        "_",
        "基金类型",
        "募集份额",
        "成立日期",
        "成立来涨幅",
        "基金经理",
        "申购状态",
        "集中认购期",
        "_",
        "_",
        "_",
        "_",
        "_",
        "_",
        "_",
        "优惠费率",
    ]
    temp_df = temp_df[[
        "基金代码",
        "基金简称",
        "发行公司",
        "基金类型",
        "集中认购期",
        "募集份额",
        "成立日期",
        "成立来涨幅",
        "基金经理",
        "申购状态",
        "优惠费率",
    ]]
    temp_df['募集份额'] = pd.to_numeric(temp_df['募集份额'])
    temp_df['成立日期'] = pd.to_datetime(temp_df['成立日期']).dt.date
    temp_df['成立来涨幅'] = pd.to_numeric(temp_df['成立来涨幅'].str.replace(',', ''))
    temp_df['优惠费率'] = temp_df['优惠费率'].str.strip("%")
    temp_df['优惠费率'] = pd.to_numeric(temp_df['优惠费率'])
    return temp_df
示例#13
0
def _get_page_num_sy_yq_list(symbol: str = "沪深两市",
                             trade_date: str = "2019-12-31") -> int:
    """
    东方财富网-数据中心-特色数据-商誉-商誉减值预期明细
    http://data.eastmoney.com/sy/yqlist.html
    :return: int 获取 商誉减值预期明细 的总页数
    """
    symbol_dict = {
        "沪市主板": f"(MKT='shzb' and ENDDATE=^{trade_date}^)",
        "深市主板": f"(MKT='szzb' and ENDDATE=^{trade_date}^)",
        "中小板": f"(MKT='zxb' and ENDDATE=^{trade_date}^)",
        "创业板": f"(MKT='cyb' and ENDDATE=^{trade_date}^)",
        "沪深两市": f"(ENDDATE=^{trade_date}^)",
    }
    url = "http://dcfm.eastmoney.com/EM_MutiSvcExpandInterface/api/js/get"
    params = {
        "type": "SY_YG",
        "token": "894050c76af8597a853f5b408b759f5d",
        "st": "NOTICEDATE",
        "sr": "-1",
        "p": "1",
        "ps": "50",
        "js": "var {name}=".format(name=ctx.call("getCode", 8)) +
        "{pages:(tp),data:(x),font:(font)}",
        "filter": symbol_dict[symbol],
        "rt": "52589731",
    }
    res = requests.get(url, params=params)
    data_json = demjson.decode(res.text[res.text.find("={") + 1:])
    return data_json["pages"]
示例#14
0
def stock_hk_spot() -> pd.DataFrame:
    """
    新浪财经-港股的所有港股的实时行情数据
    http://vip.stock.finance.sina.com.cn/mkt/#qbgg_hk
    :return: 实时行情数据
    :rtype: pandas.DataFrame
    """
    res = requests.get(hk_sina_stock_list_url,
                       params=hk_sina_stock_dict_payload)
    data_json = [
        demjson.decode(tt) for tt in [
            item + "}" for item in res.text[1:-1].split("},")
            if not item.endswith("}")
        ]
    ]
    data_df = pd.DataFrame(data_json)
    data_df = data_df[[
        "symbol",
        "name",
        "engname",
        "tradetype",
        "lasttrade",
        "prevclose",
        "open",
        "high",
        "low",
        "volume",
        "amount",
        "ticktime",
        "buy",
        "sell",
        "pricechange",
        "changepercent",
    ]]
    return data_df
示例#15
0
def _get_page_num_sy_list(symbol: str = "沪市主板",
                          trade_date: str = "2019-12-31") -> int:
    """
    东方财富网-数据中心-特色数据-商誉-个股商誉明细
    http://data.eastmoney.com/sy/list.html
    :param symbol: choice of {"沪市主板", "深市主板", "中小板", "创业板", "沪深两市"}
    :type symbol: str
    :param trade_date: 参考网站指定的数据日期
    :type trade_date: str
    :return: 个股商誉明细 的总页数
    :rtype: int
    """
    symbol_dict = {
        "沪市主板": f"""(TRADE_BOARD="shzb")(REPORT_DATE='{trade_date}')""",
        "深市主板": f"""(TRADE_BOARD="szzb")(REPORT_DATE='{trade_date}')""",
        "中小板": f"""(TRADE_BOARD="zxb")(REPORT_DATE='{trade_date}')""",
        "创业板": f"""(TRADE_BOARD="cyb")(REPORT_DATE='{trade_date}')""",
        "沪深两市": f"(REPORT_DATE='{trade_date}')",
    }
    url = "http://datacenter.eastmoney.com/api/data/get"
    params = {
        "type": "RPT_GOODWILL_STOCKDETAILS",
        "sty": "ALL",
        "p": "1",
        "ps": "50",
        "sr": "-1,-1",
        "st": "NOTICE_DATE,SECURITY_CODE",
        "var": "QvxsKBaH",
        "filter": symbol_dict[symbol],
        "rt": "53324381",
    }
    res = requests.get(url, params=params)
    data_json = demjson.decode(res.text[res.text.find("{"):-1])
    return data_json["result"]["pages"]
示例#16
0
def stock_em_qbzf() -> pd.DataFrame:
    """
    东方财富网-数据中心-新股数据-增发-全部增发
    http://data.eastmoney.com/other/gkzf.html
    :return: 全部增发
    :rtype: pandas.DataFrame
    """
    url = "http://datainterface.eastmoney.com/EM_DataCenter/JS.aspx"
    params = {
        "st": "5",
        "sr": "-1",
        "ps": "5000",
        "p": "1",
        "type": "SR",
        "sty": "ZF",
        "js": '({"pages":(pc),"data":[(x)]})',
        "stat": "0",
    }
    r = requests.get(url, params=params)
    data_text = r.text
    data_json = demjson.decode(data_text[1:-1])
    temp_df = pd.DataFrame([item.split(",") for item in data_json["data"]])
    temp_df.columns = [
        "股票代码",
        "股票简称",
        "发行方式",
        "发行总数",
        "发行价格",
        "最新价",
        "发行日期",
        "增发上市日期",
        "_",
        "增发代码",
        "网上发行",
        "_",
        "_",
        "_",
        "_",
        "_",
        "_",
    ]
    temp_df = temp_df[[
        "股票代码",
        "股票简称",
        "增发代码",
        "发行方式",
        "发行总数",
        "网上发行",
        "发行价格",
        "最新价",
        "发行日期",
        "增发上市日期",
    ]]
    temp_df["锁定期"] = "1-3年"
    temp_df['发行总数'] = pd.to_numeric(temp_df['发行总数'])
    temp_df['发行价格'] = pd.to_numeric(temp_df['发行价格'])
    temp_df['最新价'] = pd.to_numeric(temp_df['最新价'])
    temp_df['发行日期'] = pd.to_datetime(temp_df['发行日期']).dt.date
    temp_df['增发上市日期'] = pd.to_datetime(temp_df['增发上市日期']).dt.date
    return temp_df
示例#17
0
def match_main_contract(symbol: str = "cffex") -> str:
    """
    新浪财经-期货-主力合约
    http://vip.stock.finance.sina.com.cn/quotes_service/view/qihuohangqing.html#titlePos_1
    :param symbol: choice of {'czce', 'dce', 'shfe', 'cffex'}
    :type symbol: str
    :return: 主力合约的字符串
    :rtype: str
    """
    subscribe_exchange_list = []
    exchange_symbol_list = zh_subscribe_exchange_symbol(
        symbol).iloc[:, 1].tolist()
    for item in exchange_symbol_list:
        # item = 'sngz_qh'
        zh_match_main_contract_payload.update({"node": item})
        res = requests.get(zh_match_main_contract_url,
                           params=zh_match_main_contract_payload)
        data_json = demjson.decode(res.text)
        data_df = pd.DataFrame(data_json)
        try:
            main_contract = data_df[data_df.iloc[:, 3:].duplicated()]
            print(main_contract["symbol"].values[0])
            subscribe_exchange_list.append(main_contract["symbol"].values[0])
        except:
            if len(data_df) == 1:
                subscribe_exchange_list.append(data_df["symbol"].values[0])
                print(data_df["symbol"].values[0])
            else:
                print(item, "无主力合约")
            continue
    print(f"{symbol}主力合约获取成功")
    return ",".join([item for item in subscribe_exchange_list])
示例#18
0
def macro_canada_trade() -> pd.DataFrame:
    """
    东方财富-经济数据-加拿大-贸易帐
    http://data.eastmoney.com/cjsj/foreign_7_2.html
    :return: 贸易帐
    :rtype: pandas.DataFrame
    """
    url = "http://datainterface.eastmoney.com/EM_DataCenter/JS.aspx"
    params = {
        "type": "GJZB",
        "sty": "HKZB",
        "js": "({data:[(x)],pages:(pc)})",
        "p": "1",
        "ps": "2000",
        "mkt": "7",
        "stat": "2",
        'pageNo': '1',
        'pageNum': '1',
        "_": "1625474966006",
    }
    r = requests.get(url, params=params)
    data_text = r.text
    data_json = demjson.decode(data_text[1:-1])
    temp_df = pd.DataFrame([item.split(",") for item in data_json["data"]])
    temp_df.columns = [
        "时间",
        "前值",
        "现值",
        "发布日期",
    ]
    temp_df['时间'] = pd.to_datetime(temp_df['时间']).dt.date
    temp_df['发布日期'] = pd.to_datetime(temp_df['发布日期']).dt.date
    temp_df["前值"] = pd.to_numeric(temp_df["前值"]) / 100
    temp_df["现值"] = pd.to_numeric(temp_df["现值"]) / 100
    return temp_df
示例#19
0
def stock_em_yysj(date: str = "20200331") -> pd.DataFrame:
    """
    东方财富-数据中心-年报季报-预约披露时间
    http://data.eastmoney.com/bbsj/202003/yysj.html
    :param date: "20190331", "20190630", "20190930", "20191231"; 从 20081231 开始
    :type date: str
    :return: 指定时间的上市公司预约披露时间数据
    :rtype: pandas.DataFrame
    """
    url = "http://dcfm.eastmoney.com/em_mutisvcexpandinterface/api/js/get"
    params = {
        "type": "YJBB21_YYPL",
        "token": "70f12f2f4f091e459a279469fe49eca5",
        "st": "frdate",
        "sr": "1",
        "p": "1",
        "ps": "5000",
        "js": "var HXutCoUP={pages:(tp),data: (x),font:(font)}",
        "filter": f"(securitytypecode='058001001')(reportdate=^{'-'.join([date[:4], date[4:6], date[6:]])}^)",
        "rt": "52907209",
    }
    r = requests.get(url, params=params)
    data_text = r.text
    data_json = demjson.decode(data_text[data_text.find("{") :])
    temp_df = pd.DataFrame(data_json["data"])
    return temp_df
示例#20
0
def stock_zh_index_spot() -> pd.DataFrame:
    """
    新浪财经-行情中心首页-A股-分类-所有指数
    大量采集会被目标网站服务器封禁 IP, 如果被封禁 IP, 请 10 分钟后再试
    http://vip.stock.finance.sina.com.cn/mkt/#hs_s
    :return: 所有指数的实时行情数据
    :rtype: pandas.DataFrame
    """
    big_df = pd.DataFrame()
    page_count = get_zh_index_page_count()
    zh_sina_stock_payload_copy = zh_sina_index_stock_payload.copy()
    for page in tqdm(range(1, page_count + 1), leave=False):
        zh_sina_stock_payload_copy.update({"page": page})
        res = requests.get(zh_sina_index_stock_url, params=zh_sina_stock_payload_copy)
        data_json = demjson.decode(res.text)
        big_df = big_df.append(pd.DataFrame(data_json), ignore_index=True)
    big_df = big_df.applymap(_replace_comma)
    big_df["trade"] = big_df["trade"].astype(float)
    big_df["pricechange"] = big_df["pricechange"].astype(float)
    big_df["changepercent"] = big_df["changepercent"].astype(float)
    big_df["buy"] = big_df["buy"].astype(float)
    big_df["sell"] = big_df["sell"].astype(float)
    big_df["settlement"] = big_df["settlement"].astype(float)
    big_df["open"] = big_df["open"].astype(float)
    big_df["high"] = big_df["high"].astype(float)
    big_df["low"] = big_df["low"].astype(float)
    big_df.columns = [
        "代码",
        "名称",
        "最新价",
        "涨跌额",
        "涨跌幅",
        "_",
        "_",
        "昨收",
        "今开",
        "最高",
        "最低",
        "成交量",
        "成交额",
        "_",
        "_",
    ]
    big_df = big_df[
        [
            "代码",
            "名称",
            "最新价",
            "涨跌额",
            "涨跌幅",
            "昨收",
            "今开",
            "最高",
            "最低",
            "成交量",
            "成交额",
        ]
    ]
    return big_df
示例#21
0
def futures_inventory_em(exchange: str = "上海期货交易所",
                         symbol: str = "沪铝") -> pd.DataFrame:
    """
    东方财富网-数据中心-期货库存数据
    http://data.eastmoney.com/ifdata/kcsj.html
    :param exchange: choice of {"上海期货交易所", "郑州商品交易所", "大连商品交易所"}
    :type exchange: str
    :param symbol: http://data.eastmoney.com/ifdata/kcsj.html 对应的中文名称, 如: 沪铝
    :type symbol: str
    :return: 指定交易所和指定品种的库存数据
    :rtype: pandas.DataFrame
    """
    url = "http://data.eastmoney.com/ifdata/kcsj.html"
    r = requests.get(url)
    soup = BeautifulSoup(r.text, "lxml")
    temp_soup = soup.find(attrs={"id": "select_jys"}).find_all("option")
    temp_key = [item.text for item in temp_soup]
    temp_value = [item.get("value") for item in temp_soup]
    exchange_dict = dict(zip(temp_key, temp_value))
    url = 'http://datainterface.eastmoney.com/EM_DataCenter/JS.aspx'
    params = {
        'type': 'QHKC',
        'sty': 'QHKCSX',
        '_': '1618311930407',
    }
    r = requests.get(url, params=params)
    data_text = r.text
    data_json = demjson.decode(data_text[1:-1])
    temp_df = pd.DataFrame(data_json)
    temp_df = temp_df.iloc[:, 0].str.split(',', expand=True)
    symbol_dict = dict(zip(temp_df.iloc[:, 3], temp_df.iloc[:, 2]))
    url = "http://datainterface.eastmoney.com/EM_DataCenter/JS.aspx"
    params = {
        "type": "QHKC",
        "sty": "QHKCMX",
        "mkt": exchange_dict[exchange],
        "code": symbol_dict[symbol],
        "stat": "1",
        "_": "1587887394138",
    }
    r = requests.get(url, params=params)
    data_text = r.text
    data_json = demjson.decode(data_text[1:-1])
    temp_df = pd.DataFrame(data_json).iloc[:, 0].str.split(",", expand=True)
    temp_df.columns = ["日期", "库存", "增减"]
    return temp_df
示例#22
0
def stock_zh_index_daily_tx(symbol: str = "sz980017") -> pd.DataFrame:
    """
    腾讯证券-日频-股票或者指数历史数据
    作为 stock_zh_index_daily 的补充, 因为在新浪中有部分指数数据缺失
    注意都是: 前复权, 不同网站复权方式不同, 不可混用数据
    http://gu.qq.com/sh000919/zs
    :param symbol: 带市场标识的股票或者指数代码
    :type symbol: str
    :return: 后复权的股票和指数数据
    :rtype: pandas.DataFrame
    """
    start_date = _get_tx_start_year(symbol=symbol)
    url = "https://proxy.finance.qq.com/ifzqgtimg/appstock/app/newfqkline/get"
    range_start = int(start_date.split("-")[0])
    range_end = datetime.date.today().year + 1
    temp_df = pd.DataFrame()
    for year in tqdm(range(range_start, range_end)):
        params = {
            "_var": "kline_dayqfq",
            "param": f"{symbol},day,{year}-01-01,{year + 1}-12-31,640,qfq",
            "r": "0.8205512681390605",
        }
        res = requests.get(url, params=params)
        text = res.text
        try:
            inner_temp_df = pd.DataFrame(
                demjson.decode(text[text.find("={") + 1 :])["data"][symbol]["day"]
            )
        except:
            inner_temp_df = pd.DataFrame(
                demjson.decode(text[text.find("={") + 1 :])["data"][symbol]["qfqday"]
            )
        temp_df = temp_df.append(inner_temp_df, ignore_index=True)
    if temp_df.shape[1] == 6:
        temp_df.columns = ["date", "open", "close", "high", "low", "amount"]
    else:
        temp_df = temp_df.iloc[:, :6]
        temp_df.columns = ["date", "open", "close", "high", "low", "amount"]
    temp_df["date"] = pd.to_datetime(temp_df["date"]).dt.date
    temp_df["open"] = pd.to_numeric(temp_df["open"])
    temp_df["close"] = pd.to_numeric(temp_df["close"])
    temp_df["high"] = pd.to_numeric(temp_df["high"])
    temp_df["low"] = pd.to_numeric(temp_df["low"])
    temp_df["amount"] = pd.to_numeric(temp_df["amount"])
    temp_df.drop_duplicates(inplace=True)
    return temp_df
示例#23
0
def fund_hold_structure_em() -> pd.DataFrame:
    """
    天天基金网-基金数据-规模份额-持有人结构
    http://fund.eastmoney.com/data/cyrjglist.html
    :return: 持有人结构
    :rtype: pandas.DataFrame
    """
    url = "http://fund.eastmoney.com/data/FundDataPortfolio_Interface.aspx"
    params = {
        "dt": "11",
        "pi": "1",
        "pn": "50",
        "mc": "hypzDetail",
        "st": "desc",
        "sc": "reportdate",
    }
    r = requests.get(url, params=params)
    data_text = r.text
    data_json = demjson.decode(data_text[data_text.find("{"):-1])
    total_page = data_json["pages"]
    big_df = pd.DataFrame()
    for page in range(1, int(total_page) + 1):
        params.update({"pi": page})
        r = requests.get(url, params=params)
        data_text = r.text
        data_json = demjson.decode(data_text[data_text.find("{"):-1])
        temp_df = pd.DataFrame(data_json["data"])
        big_df = big_df.append(temp_df, ignore_index=True)
    big_df.reset_index(inplace=True)
    big_df["index"] = big_df["index"] + 1
    big_df.columns = [
        "序号",
        "截止日期",
        "基金家数",
        '机构持有比列',
        '个人持有比列',
        '内部持有比列',
        '总份额',
    ]
    big_df["截止日期"] = pd.to_datetime(big_df["截止日期"]).dt.date
    big_df["基金家数"] = pd.to_numeric(big_df["基金家数"])
    big_df["机构持有比列"] = pd.to_numeric(big_df["机构持有比列"])
    big_df["个人持有比列"] = pd.to_numeric(big_df["个人持有比列"])
    big_df["内部持有比列"] = pd.to_numeric(big_df["内部持有比列"])
    big_df["总份额"] = pd.to_numeric(big_df["总份额"].str.replace(",", ""))
    return big_df
示例#24
0
def index_stock_cons_sina(symbol: str = "000300") -> pd.DataFrame:
    """
    新浪新版股票指数成份页面, 目前该接口可获取指数数量较少
    http://vip.stock.finance.sina.com.cn/mkt/#zhishu_000040
    :param symbol: 指数代码
    :type symbol: str
    :return: 指数的成份股
    :rtype: pandas.DataFrame
    """
    if symbol == "000300":
        symbol = "hs300"
        url = "http://vip.stock.finance.sina.com.cn/quotes_service/api/json_v2.php/Market_Center.getHQNodeStockCountSimple"
        params = {"node": f"{symbol}"}
        r = requests.get(url, params=params)
        page_num = math.ceil(int(r.json()) / 80) + 1
        temp_df = pd.DataFrame()
        for page in range(1, page_num):
            url = "http://vip.stock.finance.sina.com.cn/quotes_service/api/json_v2.php/Market_Center.getHQNodeData"
            params = {
                "page": str(page),
                "num": "80",
                "sort": "symbol",
                "asc": "1",
                "node": "hs300",
                "symbol": "",
                "_s_r_a": "init",
            }
            r = requests.get(url, params=params)
            temp_df = temp_df.append(
                pd.DataFrame(demjson.decode(r.text)), ignore_index=True
            )
        return temp_df

    url = "http://vip.stock.finance.sina.com.cn/quotes_service/api/json_v2.php/Market_Center.getHQNodeDataSimple"
    params = {
        "page": 1,
        "num": "3000",
        "sort": "symbol",
        "asc": "1",
        "node": f"zhishu_{symbol}",
        "_s_r_a": "setlen",
    }
    r = requests.get(url, params=params)
    return pd.DataFrame(demjson.decode(r.text))
示例#25
0
def fund_etf_fund_info_em(fund: str = "511280",
                          start_date: str = "20000101",
                          end_date: str = "20500101") -> pd.DataFrame:
    """
    东方财富网站-天天基金网-基金数据-场内交易基金-历史净值明细
    http://fundf10.eastmoney.com/jjjz_511280.html
    :param fund: 场内交易基金代码, 可以通过 fund_etf_fund_daily_em 来获取
    :type fund: str
    :param start_date: 开始统计时间
    :type start_date: str
    :param end_date: 结束统计时间
    :type end_date: str
    :return: 东方财富网站-天天基金网-基金数据-场内交易基金-历史净值明细
    :rtype: pandas.DataFrame
    """
    url = "http://api.fund.eastmoney.com/f10/lsjz"
    headers = {
        "User-Agent":
        "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36",
        "Referer": f"http://fundf10.eastmoney.com/jjjz_{fund}.html",
    }
    params = {
        "callback": "jQuery183023608994033331676_1588250653363",
        "fundCode": fund,
        "pageIndex": "1",
        "pageSize": "10000",
        "startDate":
        "-".join([start_date[:4], start_date[4:6], start_date[6:]]),
        "endDate": "-".join([end_date[:4], end_date[4:6], end_date[6:]]),
        "_": round(time.time() * 1000),
    }
    r = requests.get(url, params=params, headers=headers)
    text_data = r.text
    data_json = demjson.decode(text_data[text_data.find("{"):-1])
    temp_df = pd.DataFrame(data_json["Data"]["LSJZList"])
    temp_df.columns = [
        "净值日期",
        "单位净值",
        "累计净值",
        "_",
        "_",
        "_",
        "日增长率",
        "申购状态",
        "赎回状态",
        "_",
        "_",
        "_",
        "_",
    ]
    temp_df = temp_df[["净值日期", "单位净值", "累计净值", "日增长率", "申购状态", "赎回状态"]]
    temp_df["净值日期"] = pd.to_datetime(temp_df["净值日期"]).dt.date
    temp_df["单位净值"] = pd.to_numeric(temp_df["单位净值"])
    temp_df["累计净值"] = pd.to_numeric(temp_df["累计净值"])
    temp_df["日增长率"] = pd.to_numeric(temp_df["日增长率"])
    return temp_df
示例#26
0
def stock_ipo_declare() -> pd.DataFrame:
    """
    东方财富网-数据中心-新股申购-首发申报信息-首发申报企业信息
    https://data.eastmoney.com/xg/xg/sbqy.html
    :return: 首发申报企业信息
    :rtype: pandas.DataFrame
    """
    url = "https://datainterface.eastmoney.com/EM_DataCenter/JS.aspx"
    params = {
        "st": "1",
        "sr": "-1",
        "ps": "500",
        "p": "1",
        "type": "NS",
        "sty": "NSFR",
        "js": "({data:[(x)],pages:(pc)})",
        "mkt": "1",
        "fd": "2021-04-02",
    }
    r = requests.get(url, params=params)
    data_text = r.text
    data_json = demjson.decode(data_text[1:-1])
    temp_df = pd.DataFrame([item.split(",") for item in data_json["data"]])
    temp_df.reset_index(inplace=True)
    temp_df["index"] = temp_df.index + 1
    temp_df.columns = [
        "序号",
        "会计师事务所",
        "_",
        "保荐机构",
        "_",
        "律师事务所",
        "_",
        "_",
        "拟上市地",
        "_",
        "_",
        "备注",
        "申报企业",
        "_",
        "_",
        "_",
        "_",
    ]
    temp_df = temp_df[[
        "序号",
        "申报企业",
        "拟上市地",
        "保荐机构",
        "会计师事务所",
        "律师事务所",
        "备注",
    ]]
    return temp_df
示例#27
0
def air_quality_watch_point(city: str = "杭州",
                            start_date: str = "20220408",
                            end_date: str = "20220409") -> pd.DataFrame:
    """
    真气网-监测点空气质量-细化到具体城市的每个监测点
    指定之间段之间的空气质量数据
    https://www.zq12369.com/
    :param city: 调用 ak.air_city_table() 接口获取
    :type city: str
    :param start_date: e.g., "20190327"
    :type start_date: str
    :param end_date: e.g., ""20200327""
    :type end_date: str
    :return: 指定城市指定日期区间的观测点空气质量
    :rtype: pandas.DataFrame
    """
    start_date = "-".join([start_date[:4], start_date[4:6], start_date[6:]])
    end_date = "-".join([end_date[:4], end_date[4:6], end_date[6:]])
    url = "https://www.zq12369.com/api/zhenqiapi.php"
    file_data = _get_file_content(file_name="crypto.js")
    ctx = py_mini_racer.MiniRacer()
    ctx.eval(file_data)
    method = "GETCITYPOINTAVG"
    ctx.call("encode_param", method)
    ctx.call("encode_param", start_date)
    ctx.call("encode_param", end_date)
    city_param = ctx.call("encode_param", city)
    ctx.call("encode_secret", method, city_param, start_date, end_date)
    payload = {
        "appId":
        "a01901d3caba1f362d69474674ce477f",
        "method":
        ctx.call("encode_param", method),
        "city":
        city_param,
        "startTime":
        ctx.call("encode_param", start_date),
        "endTime":
        ctx.call("encode_param", end_date),
        "secret":
        ctx.call("encode_secret", method, city_param, start_date, end_date),
    }
    headers = {
        "User-Agent":
        "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/81.0.4044.122 Safari/537.36"
    }
    r = requests.post(url, data=payload, headers=headers)
    data_text = r.text
    data_json = demjson.decode(ctx.call("decode_result", data_text))
    temp_df = pd.DataFrame(data_json["rows"])
    return temp_df
示例#28
0
def _get_zh_stock_ah_page_count() -> int:
    """
    腾讯财经-港股-AH-总页数
    https://stockapp.finance.qq.com/mstats/#mod=list&id=hk_ah&module=HK&type=AH&sort=3&page=3&max=20
    :return: 总页数
    :rtype: int
    """
    hk_payload_copy = hk_payload.copy()
    hk_payload_copy.update({"reqPage": 1})
    res = requests.get(hk_url, params=hk_payload_copy, headers=hk_headers)
    data_json = demjson.decode(
        res.text[res.text.find("{"):res.text.rfind("}") + 1])
    page_count = data_json["data"]["page_count"]
    return page_count
示例#29
0
def stock_sector_detail(sector: str = "gn_gfgn") -> pd.DataFrame:
    """
    新浪行业-板块行情-成份详情
    http://finance.sina.com.cn/stock/sl/#area_1
    :param sector: stock_sector_spot 返回的 label 值, choice of {"新浪行业", "概念", "地域", "行业"}; "启明星行业" 无详情
    :type sector: str
    :return: 指定 sector 的板块详情
    :rtype: pandas.DataFrame
    """
    url = "http://vip.stock.finance.sina.com.cn/quotes_service/api/json_v2.php/Market_Center.getHQNodeStockCount"
    params = {
        "node": sector
    }
    r = requests.get(url, params=params)
    total_num = int(r.json())
    total_page_num = math.ceil(int(total_num) / 80)
    big_df = pd.DataFrame()
    url = "http://vip.stock.finance.sina.com.cn/quotes_service/api/json_v2.php/Market_Center.getHQNodeData"
    for page in tqdm(range(1, total_page_num+1), leave=True):
        params = {
            "page": str(page),
            "num": "80",
            "sort": "symbol",
            "asc": "1",
            "node": sector,
            "symbol": "",
            "_s_r_a": "page",
        }
        r = requests.get(url, params=params)
        data_text = r.text
        data_json = demjson.decode(data_text)
        temp_df = pd.DataFrame(data_json)
        big_df = big_df.append(temp_df, ignore_index=True)
    big_df['trade'] = pd.to_numeric(big_df['trade'])
    big_df['pricechange'] = pd.to_numeric(big_df['pricechange'])
    big_df['changepercent'] = pd.to_numeric(big_df['changepercent'])
    big_df['buy'] = pd.to_numeric(big_df['buy'])
    big_df['sell'] = pd.to_numeric(big_df['sell'])
    big_df['settlement'] = pd.to_numeric(big_df['settlement'])
    big_df['open'] = pd.to_numeric(big_df['open'])
    big_df['high'] = pd.to_numeric(big_df['high'])
    big_df['low'] = pd.to_numeric(big_df['low'])
    big_df['volume'] = pd.to_numeric(big_df['volume'])
    big_df['amount'] = pd.to_numeric(big_df['amount'])
    big_df['per'] = pd.to_numeric(big_df['per'])
    big_df['pb'] = pd.to_numeric(big_df['pb'])
    big_df['mktcap'] = pd.to_numeric(big_df['mktcap'])
    big_df['nmc'] = pd.to_numeric(big_df['nmc'])
    big_df['turnoverratio'] = pd.to_numeric(big_df['turnoverratio'])
    return big_df
示例#30
0
def stock_institute_hold_detail(stock: str = "600433",
                                quarter: str = "20201") -> pd.DataFrame:
    """
    新浪财经-股票-机构持股详情
    http://vip.stock.finance.sina.com.cn/q/go.php/vComStockHold/kind/jgcg/index.phtml
    :param stock: 股票代码
    :type stock: str
    :param quarter: 从 2005 年开始, {"一季报":1, "中报":2 "三季报":3 "年报":4}, e.g., "20191", 其中的 1 表示一季报; "20193", 其中的 3 表示三季报;
    :type quarter: str
    :return: 指定股票和财报时间的机构持股数据
    :rtype: pandas.DataFrame
    """
    url = "http://vip.stock.finance.sina.com.cn/q/api/jsonp.php/var%20details=/ComStockHoldService.getJGCGDetail"
    params = {
        "symbol": stock,
        "quarter": quarter,
    }
    r = requests.get(url, params=params)
    text_data = r.text
    json_data = demjson.decode(text_data[text_data.find("{"):-2])
    big_df = pd.DataFrame()
    for item in json_data["data"].keys():
        inner_temp_df = pd.DataFrame(json_data["data"][item]).T.iloc[:-1, :]
        inner_temp_df.reset_index(inplace=True)
        big_df = big_df.append(inner_temp_df, ignore_index=True)
    if not big_df.empty:
        big_df["index"] = big_df["index"].str.split("_", expand=True)[0]
        big_df.rename(columns={"index": "institute"}, inplace=True)
        big_df = big_df.iloc[:, :12]
        big_df.columns = [
            "持股机构类型",
            "持股机构代码",
            "持股机构简称",
            "持股机构全称",
            "持股数",
            "最新持股数",
            "持股比例",
            "最新持股比例",
            "占流通股比例",
            "最新占流通股比例",
            "持股比例增幅",
            "占流通股比例增幅",
        ]
        big_df["持股机构类型"] = big_df["持股机构类型"].str.replace("fund", "基金")
        big_df["持股机构类型"] = big_df["持股机构类型"].str.replace(
            "socialSecurity", "全国社保")
        big_df["持股机构类型"] = big_df["持股机构类型"].str.replace("qfii", "QFII")
        return big_df
    else:
        return None