def _setup_all_procs(self): # make a list of all the types of processors processors = [] processors.append(proc.BufferProcessor()) processors.append(proc.Average()) processors.append(proc.Raw()) processors.append(proc.AverageN(1)) processors.append(proc.Chunk(1,0,1)) return processors
def test_total_records_not_divisible_by_n(self): params = mock_acq_params() assert params["records_per_acquisition"] % 3 != 0 ave_n = proc.AverageN(3) bufs = buffers_same_val(params, 1) emulate_acq(params, bufs, ave_n) ave_n.get_result()
def check_process_for_n_val(self, n_val, params): ave_n = proc.AverageN(n_val) bufs = buffers_random(params, 0, 255) raw_dat = bufs_to_raw_array(bufs, params) correct_results = [np.empty((n_val, params["samples_per_record"]), np.float) for _ in range(params["channel_count"])] # make the correct averaged data for rec_type in range(n_val): for result, chan_dat in zip(correct_results, raw_dat): result[rec_type] = np.mean(chan_dat[rec_type::n_val],axis=0) emulate_acq(params, bufs, ave_n) result = ave_n.get_result() for (correct, returned) in zip(correct_results, result): assert (correct == returned).all()
def test_negative_n(self): proc.AverageN(-1)
def test_zero_n(self): proc.AverageN(0)