示例#1
0
def MM_E_step(x, K, opts, tmp_mu, tmp_v, tmp_PI, xpos, xneg):
    #PS=np.zeros([K,size(x)])
    #D=np.zeros([K,size(x)]) # storages probability of samples wrt distributions
    PS = np.zeros([K, x.shape[0]])
    D = np.zeros([K, x.shape[0]
                  ])  # storages probability of samples wrt distributions

    tmp_a = np.zeros(
        K)  #it will remain zero for non-gamma or inv gamma distributions
    tmp_b = np.zeros(
        K)  #it will remain zero for non-gamma or inv gamma distributions
    for k in range(K):
        if opts['Components_Model'][k] == 'Gauss':
            Nobj = scipy.stats.norm(tmp_mu[k], np.power(tmp_v[k], 0.5))
            PS[k, :] = Nobj.pdf(x)
        elif opts['Components_Model'][k] == 'Gamma':
            tmp_a[k] = alb.alphaGm(tmp_mu[k], tmp_v[k])
            tmp_b[k] = alb.betaGm(tmp_mu[k], tmp_v[k])
            PS[k, :] = alb.gam_self(x, tmp_a[k], tmp_b[k])
            PS[k, xneg] = 0
        elif opts['Components_Model'][k] == '-Gamma':
            tmp_a[k] = alb.alphaGm(-1 * tmp_mu[k], tmp_v[k])
            tmp_b[k] = alb.betaGm(-1 * tmp_mu[k], tmp_v[k])
            PS[k, :] = alb.gam_self(-1 * x, tmp_a[k], tmp_b[k])
            PS[k, xpos] = 0
        elif opts['Components_Model'][k] == 'InvGamma':
            tmp_a[k] = alb.alphaIG(tmp_mu[k], tmp_v[k])
            tmp_b[k] = alb.betaIG(tmp_mu[k], tmp_v[k])
            PS[k, :] = alb.invgam(x, tmp_a[k], tmp_b[k])
            PS[k, xneg] = 0
        elif opts['Components_Model'][k] == '-InvGamma':
            tmp_a[k] = alb.alphaIG(-1 * tmp_mu[k], tmp_v[k])
            tmp_b[k] = alb.betaIG(-1 * tmp_mu[k], tmp_v[k])
            PS[k, :] = alb.invgam(-1 * x, tmp_a[k], tmp_b[k])
            PS[k, xpos] = 0
        elif opts['Components_Model'][k] == 'Beta':
            tmp_a[k] = alb.a_beta_distr(tmp_mu[k], tmp_v[k])
            tmp_b[k] = alb.b_beta_distr(tmp_mu[k], tmp_v[k])
            PS[k, :] = scipy.stats.beta.pdf(x, tmp_a[k], tmp_b[k])

    PS[np.isnan(PS)] = 0
    PS[np.isinf(PS)] = 0
    D = np.multiply(PS, np.matrix(tmp_PI).T)
    resp = np.divide(D, np.matrix(np.sum(D, 0)))
    N = np.sum(resp, 1)
    tmp_PI = np.divide(N, np.sum(resp)).T
    if 0:
        dum = np.add(np.log(PS), np.log(tmp_PI).T)
        dum[np.isinf(dum)] = 0
        dum[np.isinf(dum)] = 0
        Exp_lik = np.sum(np.multiply(resp, dum))
    else:
        dum = np.multiply(tmp_PI.T, PS)  #add(np.log(PS),np.log(tmp_PI).T)
        dum[np.isinf(dum)] = 1
        dum[np.isinf(dum)] = 1
        dum[dum == 0] = 1
        Exp_lik = np.sum(np.log(dum))

    return PS, resp, tmp_PI, N, Exp_lik
示例#2
0
def init_ML(x, opts):

    tol = opts['tol']
    maxiters = opts['maxits']
    K = opts['Number_of_Components']
    #Exp_lik=np.zeros(maxiters+1)

    opts_MM = copy.deepcopy(opts)
    #opts_MM['maxits']=np.int(1)
    Model = alb.Mix_Mod_MethodOfMoments(x, opts_MM)
    Exp_lik = Model['Likelihood']

    tmp_mu = Model['mu1']
    tmp_v = Model['variances']
    tmp_PI = Model['Mixing Prop.']
    param1 = np.zeros(K)
    param2 = np.zeros(K)
    for k in range(K):
        if opts['Components_Model'][k] == 'Gauss':
            param1[k] = tmp_mu[k]
            param2[k] = tmp_v[k]
        elif opts['Components_Model'][k] == 'Gamma':
            param1[k] = alb.alphaGm(tmp_mu[k], tmp_v[k])
            param2[k] = np.divide(1., alb.betaGm(tmp_mu[k], tmp_v[k]))
        elif opts['Components_Model'][k] == '-Gamma':
            param1[k] = alb.alphaGm(-1 * tmp_mu[k], tmp_v[k])
            param2[k] = np.divide(1., alb.betaGm(-1 * tmp_mu[k], tmp_v[k]))
        elif opts['Components_Model'][k] == 'InvGamma':
            param1[k] = alb.alphaIG(tmp_mu[k], tmp_v[k])
            param2[k] = alb.betaIG(tmp_mu[k], tmp_v[k])
        elif opts['Components_Model'][k] == '-InvGamma':
            param1[k] = alb.alphaIG(-1 * tmp_mu[k], tmp_v[k])
            param2[k] = alb.betaIG(-1 * tmp_mu[k], tmp_v[k])
        elif opts['Components_Model'][k] == 'Beta':
            param1[k] = alb.a_beta_distr(tmp_mu[k], tmp_v[k])
            param2[k] = alb.b_beta_distr(tmp_mu[k], tmp_v[k])

    return param1, param2, maxiters, tol, K, tmp_PI, Exp_lik
示例#3
0
def Mix_Mod_MethodOfMoments(
    x,
    opts={
        'Number_of_Components': 3,
        'Components_Model': ['Gauss', 'Gamma', '-Gamma'],
        'init_params': [0, 1, 3, 1, -3, 1],
        'maxits': np.int(100),
        'tol': 0.00001,
        'init_pi': np.true_divide(np.ones(3), 3)
    }):

    tmp_mu, tmp_v, maxiters, tol, K, tmp_PI, Exp_lik = init_MM(x, opts)
    #indexes of samples to assign 0 prob wrt each positive definite distr.
    #xneg=find(x<pow(10,-14))
    #xpos=find(x>-pow(10,-14))

    xneg = np.argwhere(x < pow(10, -14))[:, 0]
    xpos = np.argwhere(x > -pow(10, -14))[:, 0]

    #ITERATE
    flag = 0
    it = 0
    while flag == 0:
        # E-step
        PS, resp, tmp_PI, N, Exp_lik[it] = MM_E_step(x, K, opts, tmp_mu, tmp_v,
                                                     tmp_PI, xpos, xneg)
        #M-step
        tmp_mu, tm_v = MM_M_step(x, K, tmp_mu, tmp_v, resp, N)
        #convergence criterium
        if it > 0:
            if (abs((Exp_lik[it] - Exp_lik[it - 1]) / Exp_lik[it - 1]) <
                    tol) | (it > maxiters - 1):
                flag = 1
        #print(it)
        it = it + 1

    #gather output
    tmp_a = np.zeros(
        K)  #it will remain zero for non-gamma or inv gamma distributions
    tmp_b = np.zeros(
        K)  #it will remain zero for non-gamma or inv gamma distributions
    tmp_c = np.zeros(K)
    for k in range(K):
        if opts['Components_Model'][k] == 'Gamma':
            tmp_a[k] = alb.alphaGm(tmp_mu[k], tmp_v[k])
            tmp_b[k] = alb.betaGm(tmp_mu[k], tmp_v[k])
        elif opts['Components_Model'][k] == '-Gamma':
            tmp_a[k] = alb.alphaGm(-1 * tmp_mu[k], tmp_v[k])
            tmp_b[k] = alb.betaGm(-1 * tmp_mu[k], tmp_v[k])
        elif opts['Components_Model'][k] == 'InvGamma':
            tmp_a[k] = alb.alphaIG(tmp_mu[k], tmp_v[k])
            tmp_c[k] = alb.betaIG(tmp_mu[k], tmp_v[k])
        elif opts['Components_Model'][k] == '-InvGamma':
            tmp_a[k] = alb.alphaIG(-1 * tmp_mu[k], tmp_v[k])
            tmp_c[k] = alb.betaIG(-1 * tmp_mu[k], tmp_v[k])
        elif opts['Components_Model'][k] == 'Beta':
            tmp_a[k] = alb.a_beta_distr(tmp_mu[k], tmp_v[k])
            tmp_c[k] = alb.b_beta_distr(tmp_mu[k], tmp_v[k])

    output_dict = {
        'means': tmp_mu,
        'mu1': tmp_mu,
        'variances': tmp_v,
        'taus1': np.divide(1, tmp_v),
        'Mixing Prop.': np.asarray(tmp_PI)[0],
        'Likelihood': Exp_lik[0:it],
        'its': it,
        'Final responsibilities': resp,
        'opts': opts,
        'shapes': tmp_a,
        'scales': tmp_c,
        'rates': np.divide(1., tmp_b)
    }

    return output_dict
示例#4
0
def SIN_init_VB_MM(data, opts):
    K = opts['Number_of_Components']
    opts2 = copy.deepcopy(opts)
    opts2['maxits'] = 10

    #SET PRIORS
    #set mixing priors.
    mmm = 3
    #(the mean of non gauss component)
    vvv = 10
    #(the variance of the component)\
    m0 = np.zeros(K)
    tau0 = np.zeros(K)
    b0 = np.zeros(K)
    c0 = np.zeros(K)
    b_0 = np.zeros(K)
    c_0 = np.zeros(K)
    d_0 = np.zeros(K)
    e_0 = np.zeros(K)
    Erate = np.zeros(K)
    Eshape = np.zeros(K)
    loga_0 = np.zeros(K)
    Escale = np.zeros(K)

    for k in range(K):
        if opts['Components_Model'][k] == 'Gamma' or (
                opts['Components_Model'][k] == '-Gamma'):
            #set GAMMA prior on rates (shape and rate)
            Erate[k] = np.true_divide(1, betaGm(mmm, vvv))
            d_0[k] = copy.deepcopy(Erate[k])
            e_0[k] = 1
            Erate[k] = np.true_divide(d_0[k], e_0[k])
            #set shapes conditional prior (fancy)
            Eshape[k] = alphaGm(mmm, vvv)
            dum_v = np.copy(Eshape[k])
            #allow variance on shape to be of size of mean shape
            dum_p = np.true_divide(1, dum_v)
            #from laplace approx b=prec/psi'(map(s))
            b_0[k] = np.true_divide(dum_p, sp.polygamma(1, Eshape[k]))
            c_0[k] = copy.deepcopy(b_0[k])
            loga_0[k] = ((b_0[k] * sp.polygamma(0, Eshape[k])) -
                         (c_0[k] * np.log(Erate[k])))
        if opts['Components_Model'][k] == 'InvGamma' or (
                opts['Components_Model'][k] == '-InvGamma'):
            #set GAMMA prior on scale (shape d and rate e)
            Escale[k] = betaIG(mmm, vvv)
            d_0[k] = copy.deepcopy(Escale[k])
            #shape
            e_0[k] = 1
            #rate
            Escale[k] = np.true_divide(d_0[k], e_0[k])

            #set component 2 and 3 shape conditional prior (fancy)
            Eshape[k] = alphaIG(mmm, vvv)
            dum_v = np.copy(Eshape[k])
            #allow variance on shape to be of size of mean shape
            dum_p = np.true_divide(1, dum_v)
            b_0[k] = np.true_divide(dum_p, sp.polygamma(1, Eshape[k]))
            #from laplace approx b=prec/psi'(map(s))
            c_0[k] = copy.deepcopy(b_0[k])
            loga_0[k] = (-(b_0[k] * sp.polygamma(0, Eshape[k])) +
                         (c_0[k] * np.log(Escale[k])))

        Prior = {
            'lambda_0': 5,
            'm_0': 0,
            'tau_0': 100,
            'c0': 0.001,
            'b0': 100,
            'd_0': d_0,
            'e_0': e_0,
            'loga_0': loga_0,
            'b_0': b_0,
            'c_0': c_0
        }

#	#SET POSTERIORS initializations using ML mixture models

    init_ML = Mix_Mod_MethodOfMoments(data, opts2)
    resp = init_ML['Final responsibilities']

    lambdap = np.sum(resp, 1)
    Escales = np.zeros(K)
    for k in range(K):
        if opts['Components_Model'][k] == 'Gauss':
            m0[k] = init_ML['means'][k]
            tau0[k] = np.mean(np.absolute(init_ML['means']))
            #hyperparam. on precission
            init_prec = np.true_divide(1, init_ML['variances'][k])
            init_var_prec = np.var(np.true_divide(1, init_ML['variances']),
                                   ddof=1)
            c0[k] = alphaGm(init_prec, init_var_prec)
            #shape
            b0[k] = betaGm(init_prec, init_var_prec)
            #scale
        if (opts['Components_Model'][k]
                == 'Gamma') or (opts['Components_Model'][k] == '-Gamma'):
            ##hyperparam. on rates
            init_rates = np.true_divide(
                1,
                betaGm(np.absolute(init_ML['means'][k]),
                       init_ML['variances'][k])
            )  # ,   np.true_divide(1,alb.betaGm(np.absolute(ML_param[4]), ML_param[5]))  ]  ;
            dum_var_r = np.multiply(
                0.1, init_rates)  #(init_rates)* 0.1;#    var(init_rates);
            d_0[k] = alphaGm(init_rates, dum_var_r)
            #shape
            e_0[k] = np.true_divide(1, betaGm(init_rates, dum_var_r))
            #rate
            Erate[k] = np.true_divide(d_0[k], e_0[k])  # == init_rates

            #hyperparam. on shapes
            init_shapes = alphaGm(np.absolute(init_ML['means'][k]),
                                  init_ML['variances'][k])
            b_0[k] = np.sum(resp[k, :])
            c_0[k] = b_0[k]
            #loga_0=((b_0* sp.polygamma(0,init_shapes)-(c_0*log(Erates)));
            loga_0[k] = np.multiply(b_0[k], sp.polygamma(
                0, init_shapes)) - (np.multiply(c_0[k], np.log(Erate[k])))
    #MAP_shapes=invpsi((loga_0+ (c_0 .* log(Erates))) ./ b_0) # == init_shapes
        if (opts['Components_Model'][k]
                == 'InvGamma') or (opts['Components_Model'][k] == '-InvGamma'):
            #hyperparam. on scales (inverse gamma) --> scale is r in the text, #r ~ inv gamma distr
            init_scales = betaIG(np.absolute(init_ML['means'][k]),
                                 init_ML['variances'][k])
            dum_var_sc = np.multiply(0.1, init_scales)
            d_0[k] = alphaGm(init_scales, dum_var_sc)  #gamma shape
            e_0[k] = np.divide(1., betaGm(init_scales,
                                          dum_var_sc))  #gamma rate
            Escales[k] = np.divide(d_0[k], e_0[k])

            #hyperparam. on shapes
            init_shapes = alphaIG(np.absolute(init_ML['means'][k]),
                                  init_ML['variances'][k])
            sumgam = np.sum(resp, 1)
            b_0[k] = sumgam[k]
            c_0[k] = copy.deepcopy(b_0[k])
            loga_0[k] = -np.multiply(b_0[k], sp.polygamma(0, init_shapes)) + (
                np.multiply(c_0[k], np.log(Escales[k])))
            #MAP_shapes=invpsi((-loga_0+ (c_0 .* log(Escales))) ./ b_0) # == init_shapes

    shapes = np.zeros(K)
    rates = np.zeros(K)
    scales = np.zeros(K)
    for k in range(K):
        if (opts['Components_Model'][k]
                == 'Gamma') or (opts['Components_Model'][k] == '-Gamma'):

            shapes[k] = alphaGm(np.absolute(init_ML['means'][k]),
                                init_ML['variances'][k])
            rates[k] = np.divide(
                1,
                betaGm(np.absolute(init_ML['means'][k]),
                       init_ML['variances'][k]))

        if (opts['Components_Model'][k]
                == 'InvGamma') or (opts['Components_Model'][k] == '-InvGamma'):

            shapes[k] = alphaIG(np.absolute(init_ML['means'][k]),
                                init_ML['variances'][k])
            scales[k] = betaIG(np.absolute(init_ML['means'][k]),
                               init_ML['variances'][k])

    #Save posterior expectations for initialization of VB mixModel
    Posterior = {
        'gammas': resp,
        'pi': init_ML['Mixing Prop.'],
        'mus': init_ML['means'],
        'tau1s': np.true_divide(1, init_ML['variances']),
        'shapes': shapes,
        'rates': rates,
        'scales': scales,
        'lambda': lambdap,
        'm_0': m0,
        'tau_0': tau0,
        'c0': c0,
        'b0': b0,
        'd_0': d_0,
        'e_0': e_0,
        'loga_0': loga_0,
        'b_0': b_0,
        'c_0': c_0
    }

    return Prior, Posterior
示例#5
0
def SIN_init_VB_MM(data, opts):
    import scipy.special as sp
    import copy
    #SIN_init_VB_MM does
    #              - fit a mixture model using ML (EM + MM algorithms (mmfit.m))
    #              - initialize VB parameters of mixture model using EM fit as
    #              initial posteriors
    #inputs: -data : vector normalized to mean zero and unit std
    #	 -opts: list with options and values
    #		-MM = GIM or GGM( default =GIM)
    #		-MLMMits = max number of iterations allowed to ML algorithm before initialize VB (default =1)
    #		-MLMMtol = tolerance for convergence of ML algorithm before initialize VB
    #ouptput: mix1 is a list containg the initialized priors, and the posterior estimations given the ML initialization
    #example:opts=[];opts.append({'MM': 'GIM', 'MLMMits': 1, 'MLMMtol': 10^-5});
    #mix=SIN_init_VB_MM(data,opts);
    #From matlab...IN PROGRESS

    if 'MM' not in opts[0]:
        MM = 'GIM'
    else:
        MM = opts[0]['MM']

    if 'MLMMits' not in opts[0]:
        MLMMits = 1
    else:
        MLMMits = opts[0]['MLMMits']

    if 'MLMMtol' not in opts[0]:
        MLMMtol = 0.00001
    else:
        MLMMtol = opts[0]['MLMMtol']
    #SET PRIORS
    #set mixing priors.
    prior = []
    mmm = 10
    #(the mean of component)
    vvv = 10
    #(the variance of the component)
    if MM == 'GGM':
        #set GAMMA prior on rates (shape and rate)
        Erate = np.true_divide(1, alb.betaGm(mmm, vvv))
        d_0 = copy.deepcopy(Erate)
        e_0 = 1
        Erate = np.true_divide(d_0, e_0)
        #set shapes conditional prior (fancy)
        Eshape = alb.alphaGm(mmm, vvv)
        dum_v = np.copy(Eshape)
        #allow variance on shape to be of size of mean shape
        dum_p = np.true_divide(1, dum_v)
        #from laplace approx b=prec/psi'(map(s))
        b_0 = np.true_divide(dum_p, sp.polygamma(1, Eshape))
        c_0 = copy.deepcopy(b_0)
        loga_0 = ((b_0 * sp.polygamma(0, Eshape)) - (c_0 * log(Erate)))
    elif MM == 'GIM':
        #set GAMMA prior on scale (shape d and rate e)
        Escale = alb.betaIG(mmm, vvv)
        d_0 = copy.deepcopy(Escale)
        #shape
        e_0 = 1
        #rate
        Escale = np.true_divide(d_0, e_0)

        #set component 2 and 3 shape conditional prior (fancy)
        Eshape = alb.alphaIG(mmm, vvv)
        dum_v = np.copy(Eshape)
        #allow variance on shape to be of size of mean shape
        dum_p = np.true_divide(1, dum_v)
        b_0 = np.true_divide(dum_p, sp.polygamma(1, Eshape))
        #from laplace approx b=prec/psi'(map(s))
        c_0 = copy.deepcopy(b_0)
        loga_0 = (-(b_0 * sp.polygamma(0, Eshape)) + (c_0 * np.log(Escale)))

    prior.append({
        'lambda_0': 5,
        'm_0': 0,
        'tau_0': 100,
        'c0': 0.001,
        'b0': 100,
        'd_0': d_0,
        'e_0': e_0,
        'loga_0': loga_0,
        'b_0': b_0,
        'c_0': c_0
    })
    prior = prior[0]

    #SET POSTERIORS initializations using ML mixture models
    if MM == 'GGM':
        mmtype = 2
    elif MM == 'GIM':
        mmtype = 3
    else:
        mmtype = 1
        #dummy, never used gmm
    ML = []
    [mu1, v1, mu2, v2, mu3, v3, pipi, lik, numits,
     resp] = alb.mmfit3(data, MLMMits, MLMMtol, mmtype)
    ML_param = [mu1, v1, mu2, v2, mu3, v3]
    ML.append({'init': ML_param, 'pi': pipi, 'LIK': lik})
    ML = ML[0]

    #mix1.ML

    #INIT POSTERIORS BASED IN ML MIX MODEL
    post = []
    #[dum; b]=max(resp)
    q = resp.argmax(1)
    gammas = np.copy(resp)
    #lambda=sum(resp,2)'

    lambdap = resp.sum(0)

    #COMPONENT 1: Gaussian component
    #hyperparam. on mean
    m0 = ML_param[0]
    tau0 = np.true_divide(
        1,
        np.true_divide(ML_param[0] + ML_param[2] + np.absolute(ML_param[4]),
                       3))

    #hyperparam. on precission
    init_prec = np.true_divide(1, ML_param[1])
    init_var_prec = np.var([
        np.true_divide(1, ML_param[1]),
        np.true_divide(1, ML_param[3]),
        np.true_divide(1, ML_param[5])
    ],
                           ddof=1)
    c0 = alb.alphaGm(init_prec, init_var_prec)
    #shape
    b0 = alb.betaGm(init_prec, init_var_prec)
    #scale

    #COMPONENTS 2 AND 3: gamma or inverse gamma
    if MM == 'GGM':
        #hyperparam. on rates
        init_rates = [
            np.true_divide(1, alb.betaGm(np.absolute(ML_param[2]),
                                         ML_param[3])),
            np.true_divide(1, alb.betaGm(np.absolute(ML_param[4]),
                                         ML_param[5]))
        ]
        dum_var_r = np.multiply(
            0.1, init_rates)  #(init_rates)* 0.1;#    var(init_rates);
        d_0 = alb.alphaGm(init_rates, dum_var_r)
        #shape
        e_0 = np.true_divide(1, alb.betaGm(init_rates, dum_var_r))
        #rate
        Erates = np.true_divide(d_0, e_0)  # == init_rates

        #hyperparam. on shapes
        init_shapes = [
            alb.alphaGm(np.absolute(ML_param[2]), ML_param[3]),
            alb.alphaGm(np.absolute(ML_param[4]), ML_param[5])
        ]
        #b_0=[1 1];c_0=b_0;
        #b_0=sum(resp(2:3,:),2)';c_0=b_0;
        b_0 = resp.sum(0)[1:3]
        c_0 = b_0
        #loga_0=((b_0* sp.polygamma(0,init_shapes)-(c_0*log(Erates)));
        loga_0 = np.multiply(b_0, sp.polygamma(0, init_shapes)) - (np.multiply(
            c_0, np.log(Erates)))
        #MAP_shapes=invpsi((loga_0+ (c_0 .* log(Erates))) ./ b_0) # == init_shapes

    elif MM == 'GIM':
        #hyperparam. on scales (inverse gamma) --> scale is r in the text,
        #r ~ inv gamma distr
        init_scales = [
            alb.betaIG(np.absolute(ML_param[2]), ML_param[3]),
            alb.betaIG(np.absolute(ML_param[4]), ML_param[5])
        ]
        dum_var_sc = np.multiply(0.1, init_scales)
        #var(init_scales);
        d_0 = alb.alphaGm(init_scales, dum_var_sc)
        #gamma shape
        e_0 = np.divide(1, alb.betaGm(init_scales, dum_var_sc))
        #gamma rate
        Escales = np.divide(d_0, e_0)
        # == init_scales

        #hyperparam. on shapes
        init_shapes = [
            alb.alphaIG(np.absolute(ML_param[2]), ML_param[3]),
            alb.alphaIG(np.absolute(ML_param[4]), ML_param[5])
        ]
        #b_0=[1 1];c_0=b_0;
        sumgam = resp.sum(0)
        b_0 = sumgam[1:3]
        c_0 = b_0
        loga_0 = -np.multiply(b_0, sp.polygamma(0, init_shapes)) + (
            np.multiply(c_0, np.log(Escales)))
        #MAP_shapes=invpsi((-loga_0+ (c_0 .* log(Escales))) ./ b_0) # == init_shapes

    post.append({
        'lambda': lambdap,
        'm_0': m0,
        'tau_0': tau0,
        'c0': c0,
        'b0': b0,
        'd_0': d_0,
        'e_0': e_0,
        'loga_0': loga_0,
        'b_0': b_0,
        'c_0': c_0
    })
    post = post[0]
    #Save posterior expectations for initialization of VB mixModel

    mix1 = []
    if MM == 'GGM':
        shapes = [0, 0]
        rates = [0, 0]
        #shapes=alphaGm(ML_param[2:3], ML_param(2:3,2))';
        #rates= 1./  betaGm(ML_param(2:3,1), ML_param(2:3,2))' ;
        shapes[0] = alb.alphaGm(abs(ML_param[2]), ML_param[3])
        shapes[1] = alb.alphaGm(abs(ML_param[4]), ML_param[5])
        rates[0] = np.divide(1, betaGm(abs(ML_param[2]), ML_param[3]))
        rates[1] = np.divide(1, betaGm(abs(ML_param[4]), ML_param[5]))
        mix1.append({
            'gammas': resp,
            'lambda': lambdap,
            'pi': pipi,
            'mu1': ML_param[0],
            'tau1': np.true_divide(1, ML_param[1]),
            'shapes': shapes,
            'rates': rates,
            'q': q,
            'prior': prior,
            'post': post,
            'ML': ML,
            'opts': opts
        })
    elif MM == 'GIM':
        shapes = [0, 0]
        scales = [0, 0]
        shapes[0] = [alphaIG(abs(ML_param[2]), ML_param[3])]
        shapes[1] = [alphaIG(abs(ML_param[4]), ML_param[5])]
        scales[0] = [betaIG(abs(ML_param[2]), ML_param[3])]
        #   betaIG(ML_param(3,1), ML_param(3,2))  ];
        scales[1] = [betaIG(abs(ML_param[4]), ML_param[5])]
        mix1.append({
            'gammas': resp,
            'lambda': lambdap,
            'pi': pipi,
            'mu1': ML_param[0],
            'tau1': np.true_divide(1, ML_param[1]),
            'shapes': shapes,
            'scales': scales,
            'q': q,
            'prior': prior,
            'post': post,
            'ML': ML,
            'opts': opts
        })

    mix1 = mix1[0]

    return mix1
示例#6
0
def mmfit2(x, maxiters, tol, MM):
    print MM
    all_params = [0, 1, 2, 1]
    init_mu1 = all_params[0]
    init_v1 = all_params[1]
    init_mu2 = all_params[2]
    init_v2 = all_params[3]
    init_PI = np.zeros(2)
    init_PI[0] = 0.5
    init_PI[1] = 0.5
    #First estimation initial parameters for inv gammas: alphas y betas

    #if MM==1:
    #	1#fix for gmm
    #el
    if MM == 2:
        init_a1 = alb.alphaGm(init_mu2, init_v2)
        init_b1 = alb.betaGm(init_mu2, init_v2)
    elif MM == 3:
        init_a1 = alb.alphaIG(init_mu2, init_v2)
        init_b1 = alb.betaIG(init_mu2, init_v2)

    #rename parameters for iteration
    tmp_mu1 = init_mu1
    tmp_v1 = init_v1
    tmp_mu2 = init_mu2
    tmp_v2 = init_v2

    tmp_a1 = init_a1
    tmp_b1 = init_b1
    tmp_PI = init_PI
    #make structures to save the parameters estimates at each iteration
    mu1 = np.zeros(maxiters + 2)
    v1 = np.zeros(maxiters + 2)
    mu2 = np.zeros(maxiters + 2)
    v2 = np.zeros(maxiters + 2)

    a1 = np.zeros(maxiters + 2)
    b1 = np.zeros(maxiters + 2)
    tmp_lik = np.zeros(maxiters + 2)
    real_lik = np.zeros(maxiters + 2)
    PI = np.zeros(2 * (maxiters + 2))
    #3 because we fit 2 components
    PI = np.reshape(PI, [maxiters + 2, 2])
    #save first values of this structures as the initialized values
    mu1[0] = tmp_mu1
    v1[0] = tmp_v1
    mu2[0] = tmp_mu2
    v2[0] = tmp_v2

    a1[0] = tmp_a1
    b1[0] = tmp_b1
    PI[0, 0] = tmp_PI[0]
    PI[0, 1] = tmp_PI[1]
    flag = 0
    it = -1
    #indexes of samples to assign 0 prob wrt non-gauss components
    xneg = find(x < pow(10, -14))
    while flag == 0:
        it = it + 1
        #print it
        #for it in range (0,maxiters):
        #print 'it1',it

        Nobj = sc.stats.norm(tmp_mu1, pow(tmp_v1, (1 / 2)))
        pGa = Nobj.pdf(x)
        pGa[pGa == 0] = pow(10, -14)
        if MM == 1:
            1
        elif MM == 2:
            dum2 = alb.gam(x, tmp_a1, tmp_b1)
        elif MM == 3:
            dum2 = alb.invgam(x, tmp_a1, tmp_b1)

        dum2[xneg] = 0
        dum2[np.isnan(dum2)] = 0
        dum2[np.isinf(dum2)] = 0
        dum2[dum2 == 0] = pow(10, -14)
        D1 = np.multiply(np.ones(size(x)) * tmp_PI[0], pGa)
        D2 = np.multiply(np.ones(size(x)) * tmp_PI[1], dum2)
        D2[xneg] = 0
        D = D1 + D2
        R1 = np.divide(D1,
                       np.ones(size(x)) * D)
        R2 = np.divide(D2,
                       np.ones(size(x)) * D)
        resp = sc.column_stack([R1, R2])
        #tmp_lik[it]=sum( np.multiply(resp[:,0],(log(tmp_PI[0])+log(pGa))) + np.multiply(resp[:,1],(log(tmp_PI[1])+log(dum2))));#bishop
        real_lik[it] = sum(
            log(np.multiply(tmp_PI[0], pGa) + np.multiply(tmp_PI[1], dum2)))
        #N=np.ones(2)
        #N[0]=sum(R1)
        #N[1]=sum(R2)
        #PI[0,0]=N[0]/sum(N)
        #PI[0,1]=N[1]/sum(N)
        #if it < maxiters-1:
        #M step
        N = np.ones(2)
        N[0] = sum(R1)
        N[1] = sum(R2)
        tmp_PI[0] = N[0] / sum(N)
        tmp_PI[1] = N[1] / sum(N)
        #print tmp_PI
        #print tmp_lik[it]
        #update gaussian mean and variance
        tmp_mu1 = []
        tmp_mu1 = sum(np.multiply(resp[:, 0], x)) / N[0]
        tmp_v1 = []
        tmp_v1 = sum(np.multiply(resp[:, 0], pow(x - tmp_mu1, 2))) / N[0]
        #if tmp_v <= 0.5:
        #	tmp_v=0.5
        #UPDATE EACH INVERSE GAMMA.
        tmp_mu2 = []
        tmp_mu2 = sum(np.multiply(resp[:, 1], x)) / N[1]
        tmp_v2 = []
        tmp_v2 = sum(np.multiply(resp[:, 1], pow(x - tmp_mu2, 2))) / N[1]
        if tmp_v2 < 0.2:
            tmp_v2 = 0.2

        if MM == 2:
            tmp_a1 = alb.alphaGm(tmp_mu2, tmp_v2)
            tmp_b1 = alb.betaGm(tmp_mu2, tmp_v2)
        elif MM == 3:
            tmp_a1 = alb.alphaIG(tmp_mu2, tmp_v2)
            tmp_b1 = alb.betaIG(tmp_mu2, tmp_v2)

        if it > 20:
            if abs(real_lik[it] - real_lik[it - 1]) < tol:
                flag = 1
                print it

        if it > (maxiters - 1):
            flag = 1
            #print it

        if flag == 0:
            mu1[it + 1] = tmp_mu1
            v1[it + 1] = tmp_v1
            mu2[it + 1] = tmp_mu2
            v2[it + 1] = tmp_v2
            a1[it + 1] = alphaIG(tmp_mu2, tmp_v2)
            b1[it + 1] = betaIG(tmp_mu2, tmp_v2)
            PI[it + 1, :] = tmp_PI

    stmu1 = mu1[it]
    stv1 = v1[it]
    stmu2 = mu2[it]
    stv2 = v2[it]
    stPI = PI[it, :]
    lik = tmp_lik[it]

    stPI = PI[it, :]
    return stmu1, stv1, stmu2, stv2, stPI, lik, it, resp
示例#7
0
def mmfit3(x, maxiters, tol, MM):
    import copy
    import numpy as np
    all_params = [0, 1, 3, 1, -3, 1]
    init_mu1 = all_params[0]
    init_v1 = all_params[1]
    init_mu2 = all_params[2]
    init_v2 = all_params[3]
    init_mu3 = all_params[4]
    init_v3 = all_params[5]

    init_PI = np.zeros(3)
    init_PI[0] = np.true_divide(1, 3)
    init_PI[1] = np.true_divide(1, 3)
    init_PI[2] = np.true_divide(1, 3)
    #First estimation initial parameters for inv gammas: alphas y betas

    #if MM==1:
    #	1#fix for gmm
    #el
    if MM == 2:
        init_a1 = alb.alphaGm(init_mu2, init_v2)
        init_b1 = alb.betaGm(init_mu2, init_v2)
        init_a2 = alb.alphaGm(-1 * init_mu3, init_v3)
        init_b2 = alb.betaGm(-1 * init_mu3, init_v3)
    elif MM == 3:
        init_a1 = alb.alphaIG(init_mu2, init_v2)
        init_b1 = alb.betaIG(init_mu2, init_v2)
        init_a2 = alb.alphaIG(-1 * init_mu3, init_v3)
        init_b2 = alb.betaIG(-1 * init_mu3, init_v3)

    #rename parameters for iteration
    tmp_mu1 = copy.deepcopy(init_mu1)
    tmp_v1 = copy.deepcopy(init_v1)
    tmp_mu2 = copy.deepcopy(init_mu2)
    tmp_v2 = copy.deepcopy(init_v2)
    tmp_mu3 = copy.deepcopy(init_mu3)
    tmp_v3 = copy.deepcopy(init_v3)

    tmp_a1 = copy.deepcopy(init_a1)
    tmp_b1 = copy.deepcopy(init_b1)
    tmp_a2 = copy.deepcopy(init_a2)
    tmp_b2 = copy.deepcopy(init_b2)
    tmp_PI = copy.deepcopy(init_PI)
    #make structures to save the parameters estimates at each iteration
    mu1 = np.zeros(maxiters + 2)
    v1 = np.zeros(maxiters + 2)
    mu2 = np.zeros(maxiters + 2)
    v2 = np.zeros(maxiters + 2)
    mu3 = np.zeros(maxiters + 2)
    v3 = np.zeros(maxiters + 2)

    a1 = np.zeros(maxiters + 2)
    b1 = np.zeros(maxiters + 2)
    a2 = np.zeros(maxiters + 2)
    b2 = np.zeros(maxiters + 2)
    tmp_lik = np.zeros(maxiters + 2)
    real_lik = np.zeros(maxiters + 2)
    PI = np.zeros(3 * (maxiters + 2))
    #3 because we fit 3 components
    PI = np.reshape(PI, [maxiters + 2, 3])
    #save first values of this structures as the initialized values
    mu1[0] = tmp_mu1
    v1[0] = tmp_v1
    mu2[0] = tmp_mu2
    v2[0] = tmp_v2
    mu3[0] = tmp_mu2
    v3[0] = tmp_v2
    a1[0] = tmp_a1
    b1[0] = tmp_b1
    a2[0] = tmp_a2
    b2[0] = tmp_b2

    #indexes of samples to assign 0 prob wrt each inv gammas
    xneg = find(x < pow(10, -14))
    xpos = find(x > -pow(10, -14))
    eps = np.finfo(float).eps

    #First Expectation step to evaluate initilization it=0
    it = 0
    Nobj = sc.stats.norm(tmp_mu1, np.power(tmp_v1, 0.5))
    pGa = Nobj.pdf(x)
    pGa[pGa == 0] = 10**-14
    if MM == 1:
        1
    elif MM == 2:
        dum2 = alb.gam(x, tmp_a1, tmp_b1)
        dum3 = alb.gam(-1 * x, tmp_a2, tmp_b2)
    elif MM == 3:
        dum2 = alb.invgam(x, tmp_a1, tmp_b1)
        dum3 = alb.invgam(-1 * x, tmp_a2, tmp_b2)

    dum2[xneg] = 0
    dum3[xpos] = 0
    D1 = np.multiply(np.ones(size(x)) * tmp_PI[0], pGa)
    D1[np.where(D1 < 10**-14)] = eps
    D2 = np.multiply(np.ones(size(x)) * tmp_PI[1], dum2)
    D2[np.where(D2 < 10**-14)] = eps
    D3 = np.multiply(np.ones(size(x)) * tmp_PI[2], dum3)
    D3[np.where(D3 < 10**-14)] = eps
    D = D1 + D2 + D3
    R1 = np.divide(D1,
                   np.ones(size(x)) * D)
    R2 = np.divide(D2,
                   np.ones(size(x)) * D)
    R3 = np.divide(D3,
                   np.ones(size(x)) * D)
    resp = sc.column_stack([R1, R2, R3])
    #M step
    N = np.ones(3)
    N[0] = sum(R1)
    N[1] = sum(R2)
    N[2] = sum(R3)
    tmp_PI[0] = N[0] / sum(N)
    tmp_PI[1] = N[1] / sum(N)
    tmp_PI[2] = N[2] / sum(N)
    #tmp_lik[it]=sum( np.multiply(resp[:,0],(log(tmp_PI[0])+log(pGa))) + np.multiply(resp[:,1],(log(tmp_PI[1])+log(dum2)))  + np.multiply(resp[:,2],(log(tmp_PI[2])+log(dum3)))       );#bishop
    real_lik[it] = sum(
        log(
            np.multiply(tmp_PI[0], pGa) + np.multiply(tmp_PI[1], dum2) +
            np.multiply(tmp_PI[2], dum3)))
    trol = np.zeros([3, x.shape[0]])
    trol[0, :] = np.multiply(D1, tmp_PI[0])
    trol[1, :] = np.multiply(D2, tmp_PI[1])
    trol[2, :] = np.multiply(D3, tmp_PI[2])
    real_lik[it] = np.sum(np.log(trol.sum(0)))

    #ITERATE
    flag = 0
    while flag == 0:
        it = it + 1

        #update gaussian mean and variance
        tmp_mu1 = []
        tmp_mu1 = sum(np.multiply(resp[:, 0], x)) / N[0]
        tmp_v1 = []
        tmp_v1 = sum(np.multiply(resp[:, 0], pow(x - tmp_mu1, 2))) / N[0]
        #if tmp_v <= 0.5:
        #	tmp_v=0.5
        #UPDATE EACH INVERSE GAMMA.
        tmp_mu2 = []
        tmp_mu2 = sum(np.multiply(resp[:, 1], x)) / N[1]
        tmp_v2 = []
        tmp_v2 = sum(np.multiply(resp[:, 1], pow(x - tmp_mu2, 2))) / N[1]
        #if tmp_v2< 0.1:#pow(10,-1):
        #tmp_v2=0.1
        tmp_mu3 = []
        tmp_mu3 = sum(np.multiply(resp[:, 2], x)) / N[2]
        tmp_v3 = []
        tmp_v3 = sum(np.multiply(resp[:, 2], pow(x - tmp_mu3, 2))) / N[2]
        #if tmp_v3< 0.1:
        #tmp_v3=0.1
        if MM == 2:
            tmp_a1 = alb.alphaGm(tmp_mu2, tmp_v2)
            tmp_b1 = alb.betaGm(tmp_mu2, tmp_v2)
            tmp_a2 = alb.alphaGm(-1 * tmp_mu3, tmp_v3)
            tmp_b2 = alb.betaGm(-1 * tmp_mu3, tmp_v3)
        elif MM == 3:
            tmp_a1 = alb.alphaIG(tmp_mu2, tmp_v2)
            tmp_b1 = alb.betaIG(tmp_mu2, tmp_v2)
            tmp_a2 = alb.alphaIG(-1 * tmp_mu3, tmp_v3)
            tmp_b2 = alb.betaIG(-1 * tmp_mu3, tmp_v3)

        #print 'it_num',it
        Nobj = sc.stats.norm(tmp_mu1, np.power(tmp_v1, 0.5))
        pGa = Nobj.pdf(x)
        pGa[pGa == 0] = 10**-14
        if MM == 1:
            1
        elif MM == 2:
            dum2 = alb.gam(x, tmp_a1, tmp_b1)
            dum3 = alb.gam(-1 * x, tmp_a2, tmp_b2)
        elif MM == 3:
            dum2 = alb.invgam(x, tmp_a1, tmp_b1)
            dum3 = alb.invgam(-1 * x, tmp_a2, tmp_b2)

        dum2[xneg] = 0
        dum3[xpos] = 0

        dum2[np.isnan(dum2)] = 0
        dum2[np.isinf(dum2)] = 0
        dum2[dum2 == 0] = 10**-14
        dum3[np.isnan(dum3)] = 0
        dum3[np.isinf(dum3)] = 0
        dum3[dum3 == 0] = 10**-14

        D1 = np.multiply(np.ones(size(x)) * tmp_PI[0], pGa)
        D1[np.where(D1 < 10**-14)] = eps
        D2 = np.multiply(np.ones(size(x)) * tmp_PI[1], dum2)
        D2[np.where(D2 < 10**-14)] = eps
        D3 = np.multiply(np.ones(size(x)) * tmp_PI[2], dum3)
        D3[np.where(D3 < 10**-14)] = eps
        #D3[xpos]=0;
        #D2[xneg]=0;

        D = D1 + D2 + D3
        R1 = np.divide(D1,
                       np.ones(size(x)) * D)
        R2 = np.divide(D2,
                       np.ones(size(x)) * D)
        R3 = np.divide(D3,
                       np.ones(size(x)) * D)
        resp = sc.column_stack([R1, R2, R3])
        #M step
        N = np.ones(3)
        N[0] = sum(R1)
        N[1] = sum(R2)
        N[2] = sum(R3)
        tmp_PI[0] = N[0] / sum(N)
        tmp_PI[1] = N[1] / sum(N)
        tmp_PI[2] = N[2] / sum(N)
        tmp_PI[np.where(tmp_PI < 10**-14)] = eps
        #tmp_lik[it]=sum( np.multiply(resp[:,0],(log(tmp_PI[0])+log(pGa))) + np.multiply(resp[:,1],(log(tmp_PI[1])+log(dum2)))  + np.multiply(resp[:,2],(log(tmp_PI[2])+log(dum3)))       );#bishop
        real_lik[it] = sum(
            log(
                np.multiply(tmp_PI[0], pGa) + np.multiply(tmp_PI[1], dum2) +
                np.multiply(tmp_PI[2], dum3)))
        trol = np.zeros([3, x.shape[0]])
        trol[0, :] = np.multiply(D1, tmp_PI[0])
        trol[1, :] = np.multiply(D2, tmp_PI[1])
        trol[2, :] = np.multiply(D3, tmp_PI[2])
        real_lik[it] = np.sum(np.log(trol.sum(0)))

        if (abs((real_lik[it] - real_lik[it - 1]) / real_lik[it - 1]) <
                tol) | (it > maxiters):
            flag = 1

    stmu1 = tmp_mu1
    #mu1[it];
    stv1 = tmp_v1  #v1[it];
    stmu2 = tmp_mu2  #mu2[it];
    stv2 = tmp_v2  #v2[it];
    stmu3 = tmp_mu3  #mu3[it];
    stv3 = tmp_v3  #v3[it];
    stPI = tmp_PI  #PI[it,:];
    lik = real_lik[0:it]  #tmp_lik[it];

    return stmu1, stv1, stmu2, stv2, stmu3, stv3, stPI, lik, it, resp