示例#1
0
def predict(args, model, tokenizer, prefix=""):
    # Loop to handle MNLI double evaluation (matched, mis-matched)
    pred_task_names = ("mnli", "mnli-mm") if args.task_name == "mnli" else (args.task_name,)
    pred_outputs_dirs = (args.output_dir, args.output_dir + '-MM') if args.task_name == "mnli" else (args.output_dir,)

    results = {}
    for pred_task, pred_output_dir in zip(pred_task_names, pred_outputs_dirs):
        pred_dataset = load_and_cache_examples(args, pred_task, tokenizer, data_type='test')
        if not os.path.exists(pred_output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(pred_output_dir)

        args.pred_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
        # Note that DistributedSampler samples randomly
        pred_sampler = SequentialSampler(pred_dataset) if args.local_rank == -1 else DistributedSampler(pred_dataset)
        pred_dataloader = DataLoader(pred_dataset, sampler=pred_sampler, batch_size=args.pred_batch_size,
                                     collate_fn=collate_fn)

        logger.info("***** Running prediction {} *****".format(prefix))
        logger.info("  Num examples = %d", len(pred_dataset))
        logger.info("  Batch size = %d", args.pred_batch_size)
        nb_pred_steps = 0
        preds = None
        pbar = ProgressBar(n_total=len(pred_dataloader), desc="Predicting")
        for step, batch in enumerate(pred_dataloader):
            model.eval()
            batch = tuple(t.to(args.device) for t in batch)
            with torch.no_grad():
                inputs = {'input_ids': batch[0],
                          'attention_mask': batch[1],
                          'labels': batch[3]}
                if args.model_type != 'distilbert':
                    inputs['token_type_ids'] = batch[2] if (
                            'bert' in args.model_type or 'xlnet' in args.model_type) else None  # XLM, DistilBERT and RoBERTa don't use segment_ids
                outputs = model(**inputs)
                _, logits = outputs[:2]
            nb_pred_steps += 1
            if preds is None:
                preds = logits.detach().cpu().numpy()
            else:
                preds = np.append(preds, logits.detach().cpu().numpy(), axis=0)
            pbar(step)
        print(' ')
        if args.output_mode == "classification":
            preds = np.argmax(preds, axis=1)
        elif args.output_mode == "regression":
            preds = np.squeeze(preds)
        output_pred_file = os.path.join(pred_output_dir, prefix, "test_prediction.txt")
        with open(output_pred_file, "w") as writer:
            for pred in preds:
                writer.write(str(pred) + '\n')
    return results
示例#2
0
def train(args, train_dataset, model, tokenizer):
    """ Train the model """
    args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
    train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
    train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size,
                                  collate_fn=collate_fn)

    if args.max_steps > 0:
        t_total = args.max_steps
        args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
    else:
        t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
    args.warmup_steps = int(t_total * args.warmup_proportion)
    # Prepare optimizer and schedule (linear warmup and decay)
    no_decay = ['bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [
        {'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
         'weight_decay': args.weight_decay},
        {'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
    ]
    optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
    scheduler = WarmupLinearSchedule(optimizer, warmup_steps=args.warmup_steps, t_total=t_total)
    if args.fp16:
        try:
            from apex import amp
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
        model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)

    # multi-gpu training (should be after apex fp16 initialization)
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Distributed training (should be after apex fp16 initialization)
    if args.local_rank != -1:
        model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
                                                          output_device=args.local_rank,
                                                          find_unused_parameters=True)

    # Train!
    logger.info("***** Running training *****")
    logger.info("  Num examples = %d", len(train_dataset))
    logger.info("  Num Epochs = %d", args.num_train_epochs)
    logger.info("  Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
    logger.info("  Total train batch size (w. parallel, distributed & accumulation) = %d",
                args.train_batch_size * args.gradient_accumulation_steps * (
                    torch.distributed.get_world_size() if args.local_rank != -1 else 1))
    logger.info("  Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
    logger.info("  Total optimization steps = %d", t_total)

    global_step = 0
    tr_loss, logging_loss = 0.0, 0.0
    model.zero_grad()
    seed_everything(args.seed)  # Added here for reproductibility (even between python 2 and 3)




    # xs=[]
    # ys= []
    # # 生成画布
    # plt.figure(figsize=(8, 6), dpi=80)
    # # 打开交互模式
    # plt.ion()


    for i in range(int(args.num_train_epochs)):
        logger.info("  epoch  = %d", i)
        pbar = ProgressBar(n_total=len(train_dataloader), desc='Training')
        loss_list=[]
        for step, batch in enumerate(train_dataloader):
            model.train()
            batch = tuple(t.to(args.device) for t in batch)
            inputs = {'input_ids': batch[0],
                      'attention_mask': batch[1],
                      'labels': batch[3]}
            if args.model_type != 'distilbert':
                inputs['token_type_ids'] = batch[2] if args.model_type in ['bert', 'xlnet', 'albert',
                                                                           'roberta'] else None  # XLM, DistilBERT don't use segment_ids
            outputs = model(**inputs)
            loss = outputs[0]  # model outputs are always tuple in transformers (see doc)

            if args.n_gpu > 1:
                loss = loss.mean()  # mean() to average on multi-gpu parallel training
            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps

            if args.fp16:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
                torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
            else:
                loss.backward()
                torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)

            tr_loss += loss.item()
            if (step + 1) % args.gradient_accumulation_steps == 0:
                optimizer.step()
                scheduler.step()  # Update learning rate schedule
                model.zero_grad()
                global_step += 1

            if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
                #Log metrics
                if args.local_rank == -1:  # Only evaluate when single GPU otherwise metrics may not average well
                    results = evaluate(args, model, tokenizer)

            if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
                # Save model checkpoint
                output_dir = os.path.join(args.output_dir, 'checkpoint-{}'.format(global_step))
                if not os.path.exists(output_dir):
                    os.makedirs(output_dir)
                model_to_save = model.module if hasattr(model,
                                                        'module') else model  # Take care of distributed/parallel training
                model_to_save.save_pretrained(output_dir)
                torch.save(args, os.path.join(output_dir, 'training_args.bin'))
                logger.info("Saving model checkpoint to %s", output_dir)
                tokenizer.save_vocabulary(vocab_path=output_dir)
            pbar(step, {'loss': loss.item()})
            try:
                loss_list.append(loss.item())
                # print("loss_list",loss_list)
                loss_Average=sum(loss_list) / len(loss_list)
                print('loss平均',loss_Average)
            except:
                print("转化错误")
                pass
        print('loss平均',loss_Average)
        save_loss(loss=loss_Average,name=args.task_name)


        # #绘制图形
        # xs.append(i)
        # ys.append(loss.item())
        # # 清除原有图像
        # plt.cla()

        # # 设定标题等
        # # plt.title("动态曲线图", fontproperties=myfont)
        # plt.grid(True)
        # plt.plot(xs, ys)
        # # 暂停
        # plt.pause(0.001)
        # plt.show()

        print(" ")
        if 'cuda' in str(args.device):
            torch.cuda.empty_cache()
    return global_step, tr_loss / global_step
示例#3
0
def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument("--data_dir", default=None, type=str, required=True,
                        help="The input data dir. Should contain the .tsv files (or other data files) for the task.")
    parser.add_argument("--model_type", default=None, type=str, required=True,
                        help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()))
    parser.add_argument("--model_name_or_path", default=None, type=str, required=True,
                        help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(
                            ALL_MODELS))
    parser.add_argument("--task_name", default=None, type=str, required=True,
                        help="The name of the task to train selected in the list: " + ", ".join(processors.keys()))
    parser.add_argument("--output_dir", default=None, type=str, required=True,
                        help="The output directory where the model predictions and checkpoints will be written.")

    ## Other parameters
    parser.add_argument("--config_name", default="", type=str,
                        help="Pretrained config name or path if not the same as model_name")
    parser.add_argument("--tokenizer_name", default="", type=str,
                        help="Pretrained tokenizer name or path if not the same as model_name")
    parser.add_argument("--cache_dir", default="", type=str,
                        help="Where do you want to store the pre-trained models downloaded from s3")
    parser.add_argument("--max_seq_length", default=128, type=int,
                        help="The maximum total input sequence length after tokenization. Sequences longer "
                             "than this will be truncated, sequences shorter will be padded.")
    parser.add_argument("--num_labels", default=2, type=int,
                        help="在设置成为terry时候 设置分类数目")
    parser.add_argument("--do_train", action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval", action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument("--do_predict", action='store_true',
                        help="Whether to run the model in inference mode on the test set.")
    parser.add_argument("--do_lower_case", action='store_true',
                        help="Set this flag if you are using an uncased model.")
    parser.add_argument('--share_type', default='all', type=str, choices=['all', 'attention', 'ffn', 'None'])

    parser.add_argument("--per_gpu_train_batch_size", default=8, type=int,
                        help="Batch size per GPU/CPU for training.")
    parser.add_argument("--per_gpu_eval_batch_size", default=8, type=int,
                        help="Batch size per GPU/CPU for evaluation.")
    parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
                        help="Number of updates steps to accumulate before performing a backward/update pass.")
    parser.add_argument("--learning_rate", default=5e-5, type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--weight_decay", default=0.0, type=float,
                        help="Weight deay if we apply some.")
    parser.add_argument("--adam_epsilon", default=1e-8, type=float,
                        help="Epsilon for Adam optimizer.")
    parser.add_argument("--max_grad_norm", default=1.0, type=float,
                        help="Max gradient norm.")
    parser.add_argument("--num_train_epochs", default=3.0, type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument("--max_steps", default=-1, type=int,
                        help="If > 0: set total number of training steps to perform. Override num_train_epochs.")
    parser.add_argument("--warmup_proportion", default=0.1, type=float,
                        help="Proportion of training to perform linear learning rate warmup for,E.g., 0.1 = 10% of training.")

    parser.add_argument('--logging_steps', type=int, default=10,
                        help="Log every X updates steps.")
    parser.add_argument('--save_steps', type=int, default=1000,
                        help="Save checkpoint every X updates steps.")
    parser.add_argument("--eval_all_checkpoints", action='store_true',
                        help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number")
    parser.add_argument("--no_cuda", action='store_true',
                        help="Avoid using CUDA when available")
    parser.add_argument('--overwrite_output_dir', action='store_true',
                        help="Overwrite the content of the output directory")
    parser.add_argument('--overwrite_cache', action='store_true',
                        help="Overwrite the cached training and evaluation sets")
    parser.add_argument('--seed', type=int, default=42,
                        help="random seed for initialization")

    parser.add_argument('--fp16', action='store_true',
                        help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit")
    parser.add_argument('--fp16_opt_level', type=str, default='O1',
                        help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
                             "See details at https://nvidia.github.io/apex/amp.html")
    parser.add_argument("--local_rank", type=int, default=-1,
                        help="For distributed training: local_rank")
    parser.add_argument('--server_ip', type=str, default='', help="For distant debugging.")
    parser.add_argument('--server_port', type=str, default='', help="For distant debugging.")
    args = parser.parse_args()

    if not os.path.exists(args.output_dir):
        os.mkdir(args.output_dir)
    init_logger(log_file=args.output_dir + '/{}-{}.log'.format(args.model_type, args.task_name))
    if os.path.exists(args.output_dir) and os.listdir(
            args.output_dir) and args.do_train and not args.overwrite_output_dir:
        raise ValueError(
            "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(
                args.output_dir))

    # Setup distant debugging if needed
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
        ptvsd.wait_for_attach()

    # Setup CUDA, GPU & distributed training
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
        args.n_gpu = 1  # torch.cuda.device_count()
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        torch.distributed.init_process_group(backend='nccl')
        args.n_gpu = 1
    args.device = device

    # Setup logging
    logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
                   args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16)

    # Set seed
    seed_everything(args.seed)
    # Prepare GLUE task
    args.task_name = args.task_name.lower()
    if args.task_name not in processors:
        raise ValueError("Task not found: %s" % (args.task_name))
    processor = processors[args.task_name]()
    args.output_mode = output_modes[args.task_name]
    label_list = processor.get_labels()
    # num_labels = len(label_list)
    num_labels = args.num_labels

    # Load pretrained model and tokenizer
    if args.local_rank not in [-1, 0]:
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab

    args.model_type = args.model_type.lower()
    config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
    config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name_or_path,
                                          num_labels=num_labels,
                                          finetuning_task=args.task_name,
                                          share_type=args.share_type)
    tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,
                                                do_lower_case=args.do_lower_case)
    model = model_class.from_pretrained(args.model_name_or_path, from_tf=bool('.ckpt' in args.model_name_or_path),
                                        config=config)

    if args.local_rank == 0:
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab

    model.to(args.device)

    logger.info("Training/evaluation parameters %s", args)

    # Training
    if args.do_train:
        train_dataset = load_and_cache_examples(args, args.task_name, tokenizer, data_type='train')
        global_step, tr_loss = train(args, train_dataset, model, tokenizer)
        logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)

    # Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained()
    if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
        # Create output directory if needed
        if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(args.output_dir)

        logger.info("Saving model checkpoint to %s", args.output_dir)
        # Save a trained model, configuration and tokenizer using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
        model_to_save = model.module if hasattr(model,
                                                'module') else model  # Take care of distributed/parallel training
        model_to_save.save_pretrained(args.output_dir)
        tokenizer.save_pretrained(args.output_dir)

        # Good practice: save your training arguments together with the trained model
        torch.save(args, os.path.join(args.output_dir, 'training_args.bin'))

        # Load a trained model and vocabulary that you have fine-tuned
        model = model_class.from_pretrained(args.output_dir)
        tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
        model.to(args.device)

    # Evaluation
    results = []
    if args.do_eval and args.local_rank in [-1, 0]:
        tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
        checkpoints = [(0,args.output_dir)]
        if args.eval_all_checkpoints:
            checkpoints = list(
                os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME, recursive=True)))
            logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN)  # Reduce logging
            checkpoints = [(int(checkpoint.split('-')[-1]),checkpoint) for checkpoint in checkpoints if checkpoint.find('checkpoint') != -1]
            checkpoints = sorted(checkpoints,key =lambda x:x[0])
        logger.info("Evaluate the following checkpoints: %s", checkpoints)
        for _,checkpoint in checkpoints:
            global_step = checkpoint.split('-')[-1] if len(checkpoints) > 1 else ""
            prefix = checkpoint.split('/')[-1] if checkpoint.find('checkpoint') != -1 else ""

            model = model_class.from_pretrained(checkpoint)
            model.to(args.device)
            result = evaluate(args, model, tokenizer, prefix=prefix)
            results.extend([(k + '_{}'.format(global_step), v) for k, v in result.items()])
        output_eval_file = os.path.join(args.output_dir, "checkpoint_eval_results.txt")
        with open(output_eval_file, "w") as writer:
            for key,value in results:
                writer.write("%s = %s\n" % (key, str(value)))
示例#4
0
def load_and_cache_examples(args, task, tokenizer, data_type='train'):
    if args.local_rank not in [-1, 0] and not evaluate:
        torch.distributed.barrier()  # Make sure only the first process in distributed training process the dataset, and the others will use the cache

    processor = processors[task]()
    output_mode = output_modes[task]
    # Load data features from cache or dataset file
    cached_features_file = os.path.join(args.data_dir, 'cached_{}_{}_{}_{}'.format(
        data_type,
        list(filter(None, args.model_name_or_path.split('/'))).pop(),
        str(args.max_seq_length),
        str(task)))
    if os.path.exists(cached_features_file):
        logger.info("Loading features from cached file %s", cached_features_file)
        features = torch.load(cached_features_file)
    else:
        logger.info("Creating features from dataset file at %s", args.data_dir)
        label_list = processor.get_labels()


        if task in ['mnli', 'mnli-mm'] and 'roberta' in args.model_type:
            # HACK(label indices are swapped in RoBERTa pretrained model)
            label_list[1], label_list[2] = label_list[2], label_list[1]
        if task in ['terry']:
           label_list = processor.get_labels(args.num_labels)
        if data_type == 'train':
            examples = processor.get_train_examples(args.data_dir)
        elif data_type == 'dev':
            examples = processor.get_dev_examples(args.data_dir)
        else:
            examples = processor.get_test_examples(args.data_dir)

        features = convert_examples_to_features(examples,
                                                tokenizer,
                                                label_list=label_list,
                                                max_length=args.max_seq_length,
                                                output_mode=output_mode,
                                                pad_on_left=bool('xlnet' in args.model_type),
                                                # pad on the left for xlnet
                                                pad_token=tokenizer.convert_tokens_to_ids([tokenizer.pad_token])[0],
                                                pad_token_segment_id=4 if 'xlnet' in args.model_type else 0,
                                                )
        if args.local_rank in [-1, 0]:
            logger.info("Saving features into cached file %s", cached_features_file)
            torch.save(features, cached_features_file)

    if args.local_rank == 0 and not evaluate:
        torch.distributed.barrier()  # Make sure only the first process in distributed training process the dataset, and the others will use the cache
    # print('features',features[0])
    # Convert to Tensors and build dataset
    all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
    all_attention_mask = torch.tensor([f.attention_mask for f in features], dtype=torch.long)
    all_token_type_ids = torch.tensor([f.token_type_ids for f in features], dtype=torch.long)
    all_lens = torch.tensor([f.input_len for f in features], dtype=torch.long)
    # print(all_token_type_ids)
    # print([f.label for f in features],)
    if output_mode == "classification":
        all_labels = torch.tensor([f.label for f in features], dtype=torch.long)
    elif output_mode == "regression":
        all_labels = torch.tensor([f.label for f in features], dtype=torch.float)
    # elif output_mode == "terryner": #回归
    #     # all_labels = torch.tensor([f.label for f in features], dtype=torch.long)
    #     all_labels = torch.tensor([f.label for f in features], dtype=torch.long)

    # print("all_labels",all_labels)
    dataset = TensorDataset(all_input_ids, all_attention_mask, all_token_type_ids, all_lens, all_labels)
    return dataset
示例#5
0
def evaluate(args, model, tokenizer, prefix=""):
    # Loop to handle MNLI double evaluation (matched, mis-matched)
    eval_task_names = ("mnli", "mnli-mm") if args.task_name == "mnli" else (args.task_name,)
    eval_outputs_dirs = (args.output_dir, args.output_dir + '-MM') if args.task_name == "mnli" else (args.output_dir,)

    results = {}
    for eval_task, eval_output_dir in zip(eval_task_names, eval_outputs_dirs):
        eval_dataset = load_and_cache_examples(args, eval_task, tokenizer, data_type='dev')
        if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(eval_output_dir)

        args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
        # Note that DistributedSampler samples randomly
        eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset)
        eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size,
                                     collate_fn=collate_fn)

        # Eval!
        logger.info("***** Running evaluation {} *****".format(prefix))
        logger.info("  Num examples = %d", len(eval_dataset))
        logger.info("  Batch size = %d", args.eval_batch_size)
        eval_loss = 0.0
        nb_eval_steps = 0
        preds = None
        out_label_ids = None
        pbar = ProgressBar(n_total=len(eval_dataloader), desc="Evaluating")
        for step, batch in enumerate(eval_dataloader):
            model.eval()
            batch = tuple(t.to(args.device) for t in batch)
            with torch.no_grad():
                inputs = {'input_ids': batch[0],
                          'attention_mask': batch[1],
                          'labels': batch[3]}
                if args.model_type != 'distilbert':
                    inputs['token_type_ids'] = batch[2] if args.model_type in ['bert', 'xlnet', 'albert',
                                                                               'roberta'] else None  # XLM, DistilBERT and RoBERTa don't use segment_ids
                # print("inputs")
                outputs = model(**inputs)
                tmp_eval_loss, logits = outputs[:2]
                eval_loss += tmp_eval_loss.mean().item()
            nb_eval_steps += 1
            if preds is None:
                preds = logits.detach().cpu().numpy()
                out_label_ids = inputs['labels'].detach().cpu().numpy()
            else:
                preds = np.append(preds, logits.detach().cpu().numpy(), axis=0)
                out_label_ids = np.append(out_label_ids, inputs['labels'].detach().cpu().numpy(), axis=0)
            pbar(step)
        print(' ')
        if 'cuda' in str(args.device):
            torch.cuda.empty_cache()
        eval_loss = eval_loss / nb_eval_steps
        if args.output_mode == "classification":
            preds = np.argmax(preds, axis=1)
        elif args.output_mode == "regression":
            preds = np.squeeze(preds)
        result = compute_metrics(eval_task, preds, out_label_ids)
        results.update(result)
        logger.info("***** Eval results {} *****".format(prefix))
        for key in sorted(result.keys()):
            logger.info("  %s = %s", key, str(result[key]))
    return results