def create_transform(self, args, is_train): """ Convert numpy array into Tensor if dataset is for validation. Apply data augmentation method to train dataset while cv or test if args.use_aug is 1. is_train: boolean flg that dataset is for validation in cv or test return: Compose of albumentations """ if is_train and args.use_aug == 1: transform = A.Compose([ trans.Resize(299, 299), trans.Normalize(mean=self.img_mean, std=self.img_std, max_pixel_value=1.0), ToTensorV2() ]) else: transform = A.Compose([ trans.Resize(299, 299), trans.Normalize(mean=self.img_mean, std=self.img_std, max_pixel_value=1.0), ToTensorV2() ]) return transform
def augmentation(mode, target_size, prob=0.5, aug_m=2): ''' description: augmentation mode: 'train' 'test' target_size: int or list, the shape of image , aug_m: Strength of transform ''' high_p = prob low_p = high_p / 2.0 M = aug_m first_size = [int(x / 0.7) for x in target_size] if mode == 'train': return composition.Compose([ transforms.Resize(first_size[0], first_size[1], interpolation=3), transforms.Flip(p=0.5), composition.OneOf([ RandomCenterCut(scale=0.1 * M), transforms.ShiftScaleRotate(shift_limit=0.05 * M, scale_limit=0.1 * M, rotate_limit=180, border_mode=cv2.BORDER_CONSTANT, value=0), albumentations.imgaug.transforms.IAAAffine( shear=(-10 * M, 10 * M), mode='constant') ], p=high_p), transforms.RandomBrightnessContrast( brightness_limit=0.1 * M, contrast_limit=0.03 * M, p=high_p), transforms.HueSaturationValue(hue_shift_limit=5 * M, sat_shift_limit=15 * M, val_shift_limit=10 * M, p=high_p), transforms.OpticalDistortion(distort_limit=0.03 * M, shift_limit=0, border_mode=cv2.BORDER_CONSTANT, value=0, p=low_p), composition.OneOf([ transforms.Blur(blur_limit=7), albumentations.imgaug.transforms.IAASharpen(), transforms.GaussNoise(var_limit=(2.0, 10.0), mean=0), transforms.ISONoise() ], p=low_p), transforms.Resize(target_size[0], target_size[1], interpolation=3), transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), max_pixel_value=255.0) ], p=1) else: return composition.Compose([ transforms.Resize(target_size[0], target_size[1], interpolation=3), transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), max_pixel_value=255.0) ], p=1)
def train_transform(resize, normalize=None): if normalize == 'imagenet': trans_fucn = [ albu.VerticalFlip(p=0.5), albu.HorizontalFlip(p=0.5), # albu.ToFloat(max_value=255, p=1.0), albu.Normalize(p=1.0), ToTensorV2(p=1.0) ] elif normalize == 'global_norm': trans_fucn = [ albu.VerticalFlip(p=0.5), albu.HorizontalFlip(p=0.5), GlobalNormalize(p=1.0), # albu.ToFloat(max_value=255, p=1.0), ToTensorV2(p=1.0) ] else: trans_fucn = [ albu.VerticalFlip(p=0.5), albu.HorizontalFlip(p=0.5), albu.Normalize(mean=(0, 0, 0), std=(1, 1, 1)), # albu.ToFloat(max_value=255, p=1.0), ToTensorV2(p=1.0) ] return Compose(trans_fucn, p=1.0)
def get_transformv2(opt): transform_list = [] # Transforms in opt.preprocess if 'fixsize' in opt.preprocess: transform_list.append(tr.Resize(286, 286, interpolation=2, p=1)) if 'resize' in opt.preprocess: transform_list.append( tr.Resize(opt.load_size, opt.load_size, interpolation=2, p=1)) if 'crop' in opt.preprocess: transform_list.append(tr.RandomCrop(opt.crop_size, opt.crop_size, p=1)) # Transforms in colorspace if 'color' in opt.preprocess: transform_list.extend([ tr.RandomContrast(limit=0.2, p=0.5), tr.RandomBrightness(limit=0.2, p=0.5), tr.HueSaturationValue(hue_shift_limit=20, sat_shift_limit=30, val_shift_limit=20, p=0.5), # tr.ISONoise() ]) # Necessary transforms transform_list.extend([ tr.HorizontalFlip(p=0.5), tr.VerticalFlip(p=0.5), tr.Normalize(p=1.0), ToTensorV2(p=1) ]) return Compose(transform_list, additional_targets={'imageB': 'image'})
def ben_valid_augmentation(): return ACompose([ atransforms.Resize(128, 128, interpolation=3), atransforms.Normalize(mean=BEN_BAND_STATS['mean'], std=BEN_BAND_STATS['std']), AToTensor(), ])
def eval_transform(resize, normalize=None): if normalize == 'imagenet': trans_func = [ albu.Normalize(p=1.0), ToTensorV2(p=1.0) ] elif normalize == 'global_norm': trans_func = [ GlobalNormalize(p=1.0), ToTensorV2(p=1.0) ] else: trans_func = [ albu.Normalize(mean=(0, 0, 0), std=(1, 1, 1)), ToTensorV2(p=1.0) ] return Compose(trans_func, p=1.0)
def get_presize_combine_transforms_V4(): transforms_presize = A.Compose([ transforms.PadIfNeeded(600, 800), geometric.Perspective( scale=[0, .1], pad_mode=cv2.BORDER_REFLECT, interpolation=cv2.INTER_AREA, p = .3), transforms.Flip(), geometric.ShiftScaleRotate(interpolation=cv2.INTER_LANCZOS4, p = 0.95, scale_limit=0.0), crops.RandomResizedCrop( TARGET_SIZE, TARGET_SIZE, scale=(config['rrc_scale_min'], config['rrc_scale_max']), ratio=(.70, 1.4), interpolation=cv2.INTER_CUBIC, p=1.0), transforms.Transpose() #rotate.Rotate(interpolation=cv2.INTER_LANCZOS4, p = 0.99), ]) transforms_postsize = A.Compose([ #imgaug.IAAPiecewiseAffine(), transforms.CoarseDropout(), transforms.CLAHE(p=.1), transforms.RandomToneCurve(scale=.1, p=0.2), transforms.RandomBrightnessContrast( brightness_limit=.1, contrast_limit=0.4, p=.8), transforms.HueSaturationValue( hue_shift_limit=20, sat_shift_limit=50, val_shift_limit=0, p=0.5), transforms.Equalize(p=0.05), transforms.FancyPCA(p=0.05), transforms.RandomGridShuffle(p=0.1), A.OneOf([ transforms.MotionBlur(blur_limit=(3, 9)), transforms.GaussianBlur(), transforms.MedianBlur() ], p=0.1), transforms.ISONoise(p=.2), transforms.GaussNoise(var_limit=127., p=.3), A.OneOf([ transforms.GridDistortion(interpolation=cv2.INTER_AREA, distort_limit=[0.7, 0.7], p=0.5), transforms.OpticalDistortion(interpolation=cv2.INTER_AREA, p=.3), ], p=.3), geometric.ElasticTransform(alpha=4, sigma=4, alpha_affine=4, interpolation=cv2.INTER_AREA, p=0.3), transforms.CoarseDropout(), transforms.Normalize(), ToTensorV2() ]) return transforms_presize, transforms_postsize
def AlbumentationTrainTransform(self): tf = tc.Compose([ta.HorizontalFlip(p=0.5), ta.Rotate(limit=(-20, 20)), # ta.VerticalFlip(p=0.5), # ta.Cutout(num_holes=3, max_h_size=8, max_w_size=8, p=0.5), # ta.Blur(), # ta.ChannelShuffle(), # ta.InvertImg(), ta.RandomCrop(height=30, width=30, p=5.0), ta.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)), tp.ToTensor() ]) return lambda img: tf(image = np.array(img))["image"]
def __init__(self, im_paths=None, labels=None, phase=None, resize=False): """ Args: im_paths (numpy): image_data y (numpy): label data transform: pytorch transforms for transforms and tensor conversion """ self.im_paths = im_paths self.labels = labels self.resize = resize self.albumentations_transform = { 'train': Compose([ ab_transforms.HorizontalFlip(p=0.2), ab_transforms.VerticalFlip(p=0.2), ab_transforms.Rotate(limit=180, p=0.2), ab_transforms.HueSaturationValue(p=0.1), ab_transforms.RandomContrast(p=0.1), ab_transforms.GaussianBlur(blur_limit=3, p=0.2), ab_transforms.GaussNoise(p=0.05), ab_transforms.CLAHE(p=0.2), ab_transforms.Normalize(mean=[0.5944, 0.4343, 0.5652], std=[0.2593, 0.2293, 0.2377]), ToTensor() ]), 'val': Compose([ ab_transforms.Normalize(mean=[0.5944, 0.4343, 0.5652], std=[0.2593, 0.2293, 0.2377]), ToTensor() ]), } if phase == 'train': self.transform = self.albumentations_transform['train'] else: self.transform = self.albumentations_transform['val']
def create_transform(self, args, is_train): """ Convert numpy array into Tensor if dataset is for validation. Apply data augmentation method to train dataset while cv or test if args.use_aug is 1. is_train: boolean flg that dataset is for validation in cv or test return: Compose of albumentations """ if is_train and args.use_aug == 1: transform = A.Compose([ trans.Normalize(mean=self.cifar_10_mean, std=self.cifar_10_std, max_pixel_value=1.0), trans.HorizontalFlip(p=0.5), trans.ShiftScaleRotate(shift_limit=0, scale_limit=0.25, rotate_limit=30, p=1), trans.CoarseDropout(max_holes=1, min_holes=1, min_width=12, min_height=12, max_height=12, max_width=12, p=0.5), ToTensorV2() ]) else: transform = A.Compose([ trans.Normalize(mean=self.cifar_10_mean, std=self.cifar_10_std, max_pixel_value=1.0), ToTensorV2() ]) return transform
def __init__(self, data_folder, cli_args): self.cli_args = cli_args self.root: str = data_folder self.image_names: List[str] = sorted(os.listdir(os.path.join(self.root, "test", "imgs"))) self.transform = Compose( [ # Normalize images to [0..1] tf.Normalize(mean=(0.0, 0.0, 0.0), std=(1.0, 1.0, 1.0), p=1), # Resize images to (image_size, image_size) tf.Resize(cli_args.image_size, cli_args.image_size), # Convert PIL images to torch.Tensor ToTensorV2(), ] )
def get_presize_combine_tune_transforms(): transforms_presize = A.Compose([ transforms.Transpose(), transforms.Flip(), #transforms.PadIfNeeded(600, 800), crops.RandomResizedCrop( TARGET_SIZE, TARGET_SIZE, scale=(.75, 1), interpolation=cv2.INTER_CUBIC, p=1.0), rotate.Rotate(interpolation=cv2.INTER_LANCZOS4, p = 0.99), ]) transforms_postsize = A.Compose([ transforms.CoarseDropout(), # transforms.CLAHE(p=.1), transforms.RandomToneCurve(scale=.1), transforms.RandomBrightnessContrast( brightness_limit=.1, contrast_limit=0.2, p=.7), transforms.HueSaturationValue( hue_shift_limit=20, sat_shift_limit=60, val_shift_limit=0, p=0.6), #transforms.Equalize(p=0.1), #transforms.FancyPCA(p=0.05), #transforms.RandomGridShuffle(p=0.1), #A.OneOf([ # transforms.MotionBlur(blur_limit=(3, 9)), # transforms.GaussianBlur(), # transforms.MedianBlur() # ], p=0.2), transforms.ISONoise(p=.3), transforms.GaussNoise(var_limit=255., p=.3), #A.OneOf([ # transforms.GridDistortion(interpolation=cv2.INTER_AREA, distort_limit=[0.7, 0.7], p=0.5), # transforms.OpticalDistortion(interpolation=cv2.INTER_AREA, p=.3), # ], p=.3), geometric.ElasticTransform(alpha=4, sigma=100, alpha_affine=100, interpolation=cv2.INTER_AREA, p=0.3), transforms.CoarseDropout(), transforms.Normalize(), ToTensorV2() ]) return transforms_presize, transforms_postsize
def ben_augmentation(): # !! Need to do something to change color _probably_ return ACompose([ atransforms.HorizontalFlip(p=0.5), atransforms.RandomRotate90(p=1.0), atransforms.ShiftScaleRotate(shift_limit=0, scale_limit=0, p=1.0), atransforms.RandomSizedCrop((60, 120), height=128, width=128, interpolation=3), # atransforms.GridDistortion(num_steps=5, p=0.5), # !! Maybe too much noise? atransforms.Normalize(mean=BEN_BAND_STATS['mean'], std=BEN_BAND_STATS['std']), # atransforms.ChannelDropout(channel_drop_range=(1, 2), p=0.5), AToTensor(), ])
def test_dataloader(self): augmentations = Compose([ A.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ToTensorV2(), ]) test_ds = MelanomaDataset( df=self.test_df, images_path=self.test_images_path, augmentations=augmentations, # TODO: add TTA train_or_valid=False, ) return DataLoader( test_ds, batch_size=self.hparams.bs, shuffle=False, num_workers=os.cpu_count(), pin_memory=True, )
def get_valid_transforms(): return A.Compose([ transforms.Transpose(), transforms.PadIfNeeded(600, 800), rotate.Rotate(interpolation=cv2.INTER_LANCZOS4, p = 0.90), crops.RandomResizedCrop( TARGET_SIZE_VALID, TARGET_SIZE_VALID, scale=(.75, 1), interpolation=cv2.INTER_CUBIC, p=1.0), transforms.Flip(), #transforms.RandomToneCurve(scale=.1), #transforms.RandomBrightnessContrast(brightness_limit=0.0, contrast_limit=0.3, p=.7), #transforms.HueSaturationValue(hue_shift_limit=10, # sat_shift_limit=10, # val_shift_limit=5, p=0.6), transforms.Normalize(), ToTensorV2() ])
def get_train_transforms(): return A.Compose([ transforms.PadIfNeeded(600, 800), geometric.ShiftScaleRotate(interpolation=cv2.INTER_LANCZOS4, p = 0.99, scale_limit=0.8), geometric.Perspective(pad_mode=cv2.BORDER_REFLECT,interpolation=cv2.INTER_AREA), crops.RandomResizedCrop( TARGET_SIZE, TARGET_SIZE, scale=(config['rrc_scale_min'], config['rrc_scale_max']), interpolation=cv2.INTER_CUBIC, p=1.0), transforms.Transpose(), transforms.Flip(), transforms.CoarseDropout(), transforms.CLAHE(p=.1), transforms.RandomToneCurve(scale=.1), transforms.RandomBrightnessContrast( brightness_limit=.1, contrast_limit=0.3, p=.7), transforms.HueSaturationValue( hue_shift_limit=20, sat_shift_limit=60, val_shift_limit=0, p=0.6), transforms.RandomGridShuffle(p=0.1), A.OneOf([ transforms.MotionBlur(blur_limit=(3, 9)), transforms.GaussianBlur(), transforms.MedianBlur() ], p=0.2), transforms.ISONoise(p=.3), transforms.GaussNoise(var_limit=255., p=.3), A.OneOf([ transforms.GridDistortion(interpolation=cv2.INTER_AREA, distort_limit=[0.7, 0.7], p=0.5), transforms.OpticalDistortion(interpolation=cv2.INTER_AREA, p=.3), ], p=.3), geometric.ElasticTransform(alpha=4, sigma=100, alpha_affine=100, interpolation=cv2.INTER_AREA, p=0.3), transforms.CoarseDropout(), transforms.Normalize(), ToTensorV2() ])
def train_dataloader(self): augmentations = Compose( [ A.RandomResizedCrop( height=self.hparams.sz, width=self.hparams.sz, scale=(0.7, 1.0), ), # AdvancedHairAugmentation(), A.GridDistortion(), A.RandomBrightnessContrast(), A.ShiftScaleRotate(), A.Flip(p=0.5), A.CoarseDropout( max_height=int(self.hparams.sz / 10), max_width=int(self.hparams.sz / 10), ), # A.HueSaturationValue(), A.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], max_pixel_value=255, ), ToTensorV2(), ] ) train_ds = MelanomaDataset( df=self.train_df, images_path=self.train_images_path, augmentations=augmentations, train_or_valid=True, ) return DataLoader( train_ds, # sampler=sampler, batch_size=self.hparams.bs, shuffle=True, num_workers=os.cpu_count(), pin_memory=True, )
def get_patched_input(img_path, config, gt_mask_flag): img_patch_set = [] p_size = config['patch_size'] img_size = config['input_w'] patch_overlap = config['patch_overlap'] if gt_mask_flag == True: label_path = img_path.replace('image', 'labels') img_input = cv2.imread(img_path) if gt_mask_flag == True: mask_input = cv2.imread(label_path) if gt_mask_flag == True: image_patch, mask_patch = patch_gen(img_input, mask_input, p_size, patch_overlap) else: image_patch, mask_patch = patch_gen(img_input, img_input, p_size, patch_overlap) val_transform = Compose([ transforms.Resize(config['input_h'], config['input_w']), transforms.Normalize(), ]) patch_len = len(image_patch) for idx in range(patch_len): img = image_patch[idx] img = cv2.resize(img, (img_size, img_size)) mask = img if val_transform is not None: augmented = val_transform(image=img, mask=mask) img = augmented['image'] img = img.astype('float32') / 255 img = img.transpose(2, 0, 1) img_patch_set.append(img) img_patch_set = np.array(img_patch_set) mask_patch_set = np.array(mask_patch) return img_input, img_patch_set, mask_patch_set
def get_tta_transforms(): return Compose([ A.RandomResizedCrop( height=hparams.sz, width=hparams.sz, scale=(0.7, 1.0), ), # AdvancedHairAugmentation(), A.GridDistortion(), A.RandomBrightnessContrast(), A.ShiftScaleRotate(), A.Flip(p=0.5), A.CoarseDropout( max_height=int(hparams.sz / 10), max_width=int(hparams.sz / 10), ), # A.HueSaturationValue(), A.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], max_pixel_value=255, ), ToTensorV2(), ])
img_as_rgb = np.rot90(img_as_rgb) # Transform image to tensor if self.transform is not None: # Apply transformations augmented = self.transform(image=img_as_rgb) # Convert numpy array to PIL Image img_as_tensor = augmented['image'] # Return image and the label return (img_as_tensor, single_image_label) #%% with albumentations for Image level classification albumentations_transform_im = { 'train': Compose([ ab_transforms.Normalize(mean=[0.5944, 0.4343, 0.5652], std=[0.2593, 0.2293, 0.2377]), ToTensor() ]), 'val': Compose([ ab_transforms.Normalize(mean=[0.5944, 0.4343, 0.5652], std=[0.2593, 0.2293, 0.2377]), ToTensor() ]), } class Img_CustomDataset(Dataset): def __init__(self, im_paths, labels, phase=None): """ Args:
def main(): args = parse_args() if args.name is None: args.name = '%s_%s' % (args.arch, datetime.now().strftime('%m%d%H')) if not os.path.exists('models/%s' % args.name): os.makedirs('models/%s' % args.name) if args.resume: args = joblib.load('models/%s/args.pkl' % args.name) args.resume = True print('Config -----') for arg in vars(args): print('- %s: %s' % (arg, getattr(args, arg))) print('------------') with open('models/%s/args.txt' % args.name, 'w') as f: for arg in vars(args): print('- %s: %s' % (arg, getattr(args, arg)), file=f) joblib.dump(args, 'models/%s/args.pkl' % args.name) if args.seed is not None and not args.resume: print('set random seed') random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) if args.loss == 'BCEWithLogitsLoss': criterion = BCEWithLogitsLoss().cuda() elif args.loss == 'WeightedBCEWithLogitsLoss': criterion = BCEWithLogitsLoss(weight=torch.Tensor([1., 1., 1., 1., 1., 2.]), smooth=args.label_smooth).cuda() elif args.loss == 'FocalLoss': criterion = FocalLoss().cuda() elif args.loss == 'WeightedFocalLoss': criterion = FocalLoss(weight=torch.Tensor([1., 1., 1., 1., 1., 2.])).cuda() else: raise NotImplementedError if args.pred_type == 'all': num_outputs = 6 elif args.pred_type == 'except_any': num_outputs = 5 else: raise NotImplementedError cudnn.benchmark = True # create model model = get_model(model_name=args.arch, num_outputs=num_outputs, freeze_bn=args.freeze_bn, dropout_p=args.dropout_p, pooling=args.pooling, lp_p=args.lp_p) model = model.cuda() train_transform = Compose([ transforms.Resize(args.img_size, args.img_size), transforms.HorizontalFlip() if args.hflip else NoOp(), transforms.VerticalFlip() if args.vflip else NoOp(), transforms.ShiftScaleRotate( shift_limit=args.shift_limit, scale_limit=args.scale_limit, rotate_limit=args.rotate_limit, border_mode=cv2.BORDER_CONSTANT, value=0, p=args.shift_scale_rotate_p ) if args.shift_scale_rotate else NoOp(), transforms.RandomContrast( limit=args.contrast_limit, p=args.contrast_p ) if args.contrast else NoOp(), RandomErase() if args.random_erase else NoOp(), transforms.CenterCrop(args.crop_size, args.crop_size) if args.center_crop else NoOp(), ForegroundCenterCrop(args.crop_size) if args.foreground_center_crop else NoOp(), transforms.RandomCrop(args.crop_size, args.crop_size) if args.random_crop else NoOp(), transforms.Normalize(mean=model.mean, std=model.std), ToTensor(), ]) if args.img_type: stage_1_train_dir = 'processed/stage_1_train_%s' %args.img_type else: stage_1_train_dir = 'processed/stage_1_train' df = pd.read_csv('inputs/stage_1_train.csv') img_paths = np.array([stage_1_train_dir + '/' + '_'.join(s.split('_')[:-1]) + '.png' for s in df['ID']][::6]) labels = np.array([df.loc[c::6, 'Label'].values for c in range(6)]).T.astype('float32') df = df[::6] df['img_path'] = img_paths for c in range(6): df['label_%d' %c] = labels[:, c] df['ID'] = df['ID'].apply(lambda s: '_'.join(s.split('_')[:-1])) meta_df = pd.read_csv('processed/stage_1_train_meta.csv') meta_df['ID'] = meta_df['SOPInstanceUID'] test_meta_df = pd.read_csv('processed/stage_1_test_meta.csv') df = pd.merge(df, meta_df, how='left') patient_ids = meta_df['PatientID'].unique() test_patient_ids = test_meta_df['PatientID'].unique() if args.remove_test_patient_ids: patient_ids = np.array([s for s in patient_ids if not s in test_patient_ids]) train_img_paths = np.hstack(df[['img_path', 'PatientID']].groupby(['PatientID'])['img_path'].apply(np.array).loc[patient_ids].to_list()).astype('str') train_labels = [] for c in range(6): train_labels.append(np.hstack(df[['label_%d' %c, 'PatientID']].groupby(['PatientID'])['label_%d' %c].apply(np.array).loc[patient_ids].to_list())) train_labels = np.array(train_labels).T if args.resume: checkpoint = torch.load('models/%s/checkpoint.pth.tar' % args.name) # train train_set = Dataset( train_img_paths, train_labels, transform=train_transform) train_loader = torch.utils.data.DataLoader( train_set, batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers, # pin_memory=True, ) if args.optimizer == 'Adam': optimizer = optim.Adam( filter(lambda p: p.requires_grad, model.parameters()), lr=args.lr, weight_decay=args.weight_decay) elif args.optimizer == 'AdamW': optimizer = optim.AdamW( filter(lambda p: p.requires_grad, model.parameters()), lr=args.lr, weight_decay=args.weight_decay) elif args.optimizer == 'RAdam': optimizer = RAdam( filter(lambda p: p.requires_grad, model.parameters()), lr=args.lr, weight_decay=args.weight_decay) elif args.optimizer == 'SGD': optimizer = optim.SGD(filter(lambda p: p.requires_grad, model.parameters()), lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay, nesterov=args.nesterov) else: raise NotImplementedError if args.apex: amp.initialize(model, optimizer, opt_level='O1') if args.scheduler == 'CosineAnnealingLR': scheduler = lr_scheduler.CosineAnnealingLR( optimizer, T_max=args.epochs, eta_min=args.min_lr) elif args.scheduler == 'MultiStepLR': scheduler = lr_scheduler.MultiStepLR(optimizer, milestones=[int(e) for e in args.milestones.split(',')], gamma=args.gamma) else: raise NotImplementedError log = { 'epoch': [], 'loss': [], } start_epoch = 0 if args.resume: model.load_state_dict(checkpoint['state_dict']) optimizer.load_state_dict(checkpoint['optimizer']) scheduler.load_state_dict(checkpoint['scheduler']) start_epoch = checkpoint['epoch'] log = pd.read_csv('models/%s/log.csv' % args.name).to_dict(orient='list') for epoch in range(start_epoch, args.epochs): print('Epoch [%d/%d]' % (epoch + 1, args.epochs)) # train for one epoch train_loss = train(args, train_loader, model, criterion, optimizer, epoch) if args.scheduler == 'CosineAnnealingLR': scheduler.step() print('loss %.4f' % (train_loss)) log['epoch'].append(epoch) log['loss'].append(train_loss) pd.DataFrame(log).to_csv('models/%s/log.csv' % args.name, index=False) torch.save(model.state_dict(), 'models/%s/model.pth' % args.name) print("=> saved model") state = { 'epoch': epoch + 1, 'state_dict': model.state_dict(), 'optimizer': optimizer.state_dict(), 'scheduler': scheduler.state_dict(), } torch.save(state, 'models/%s/checkpoint.pth.tar' % args.name)
def AlbumentationTestTransform(self): tf = tc.Compose([ta.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)), tp.ToTensor() # tp.ToTensor(dict(mean=(0.4914, 0.4822, 0.4465), std=(0.247, 0.2435, 0.2616))) ]) return lambda img: tf(image = np.array(img))["image"]
def get_transforms(phase: str, cli_args) -> Dict[str, Compose]: """Get composed albumentations augmentations Parameters ---------- phase : str Phase of learning In ['train', 'val'] cli_args Arguments coming all the way from `main.py` Returns ------- transforms: dict[str, albumentations.core.composition.Compose] Composed list of transforms """ aug_transforms = [] im_sz = (cli_args.image_size, cli_args.image_size) if phase == "train": # Data augmentation for training only aug_transforms.extend([ tf.ShiftScaleRotate( shift_limit=0, scale_limit=0.1, rotate_limit=15, p=0.5), tf.Flip(p=0.5), tf.RandomRotate90(p=0.5), ]) # Exotic Augmentations for train only 🤤 aug_transforms.extend([ tf.RandomBrightnessContrast(p=0.5), tf.ElasticTransform(p=0.5), tf.MultiplicativeNoise(multiplier=(0.5, 1.5), per_channel=True, p=0.2), ]) aug_transforms.extend([ tf.RandomSizedCrop(min_max_height=im_sz, height=im_sz[0], width=im_sz[1], w2h_ratio=1.0, interpolation=cv2.INTER_LINEAR, p=1.0), ]) aug_transforms = Compose(aug_transforms) mask_only_transforms = Compose([ tf.Normalize(mean=0, std=1, always_apply=True) ]) image_only_transforms = Compose([ tf.Normalize(mean=(0.0, 0.0, 0.0), std=(1.0, 1.0, 1.0), always_apply=True) ]) final_transforms = Compose([ ToTensorV2() ]) transforms = { 'aug': aug_transforms, 'img_only': image_only_transforms, 'mask_only': mask_only_transforms, 'final': final_transforms } return transforms
def main(): args = parse_args() config_file = "../configs/config_SN7.json" config_dict = json.loads(open(config_file, 'rt').read()) #config_dict = json.loads(open(sys.argv[1], 'rt').read()) file_dict = config_dict['file_path'] val_config = config_dict['val_config'] name = val_config['name'] input_folder =file_dict['input_path'] # '../inputs' model_folder = file_dict['model_path'] # '../models' output_folder = file_dict['output_path'] # '../models' ss_unet_GAN = True # create model if ss_unet_GAN == False: path = os.path.join(model_folder, '%s/config.yml' % name) with open(os.path.join(model_folder, '%s/config.yml' % name), 'r') as f: config = yaml.load(f, Loader=yaml.FullLoader) config['name'] = name print('-' * 20) for key in config.keys(): print('%s: %s' % (key, str(config[key]))) print('-' * 20) cudnn.benchmark = True print("=> creating model %s" % config['arch']) model = archs.__dict__[config['arch']](config['num_classes'], config['input_channels'], config['deep_supervision']) model = model.cuda() #img_ids = glob(os.path.join(input_folder, config['dataset'], 'images', '*' + config['img_ext'])) #img_ids = [os.path.splitext(os.path.basename(p))[0] for p in img_ids] #_, val_img_ids = train_test_split(img_ids, test_size=0.2, random_state=41) model_dict = torch.load(os.path.join(model_folder,'%s/model.pth' %config['name'])) if "state_dict" in model_dict.keys(): model_dict = remove_prefix(model_dict['state_dict'], 'module.') else: model_dict = remove_prefix(model_dict, 'module.') model.load_state_dict(model_dict, strict=False) #model.load_state_dict(torch.load(os.path.join(model_folder,'%s/model.pth' %config['name']))) model.eval() else: val_config = config_dict['val_config'] generator_name = val_config['name'] with open(os.path.join(model_folder, '%s/config.yml' % generator_name), 'r') as f: config = yaml.load(f, Loader=yaml.FullLoader) generator = Generator(config) generator = generator.cuda() ''' with open(os.path.join(model_folder, '%s/config.yml' % name), 'r') as f: config = yaml.load(f, Loader=yaml.FullLoader) ''' config['name'] = name model_dict = torch.load(os.path.join(model_folder,'%s/model.pth' %config['name'])) if "state_dict" in model_dict.keys(): model_dict = remove_prefix(model_dict['state_dict'], 'module.') else: model_dict = remove_prefix(model_dict, 'module.') generator.load_state_dict(model_dict, strict=False) #model.load_state_dict(torch.load(os.path.join(model_folder,'%s/model.pth' %config['name']))) generator.eval() # Data loading code img_ids = glob(os.path.join(input_folder, config['val_dataset'], 'images','test', '*' + config['img_ext'])) val_img_ids = [os.path.splitext(os.path.basename(p))[0] for p in img_ids] mean = [0.485, 0.456, 0.406] std = [0.229, 0.224, 0.225] val_transform = Compose([ transforms.Resize(config['input_h'], config['input_w']), #transforms.Normalize((0.5,0.5,0.5),(0.5,0.5,0.5)), transforms.Normalize(mean=mean, std=std), ]) val_dataset = Dataset( img_ids=val_img_ids, img_dir=os.path.join(input_folder, config['val_dataset'], 'images','test'), mask_dir=os.path.join(input_folder, config['val_dataset'], 'annotations','test'), img_ext=config['img_ext'], mask_ext=config['mask_ext'], num_classes=config['num_classes'], input_channels=config['input_channels'], transform=val_transform) val_loader = torch.utils.data.DataLoader( val_dataset, batch_size=1, #config['batch_size'], shuffle=False, num_workers=config['num_workers'], drop_last=False) avg_meters = {'iou': AverageMeter(), 'dice' : AverageMeter()} num_classes = config['num_classes'] for c in range(config['num_classes']): os.makedirs(os.path.join( output_folder, config['name'], str(c)), exist_ok=True) csv_save_name = os.path.join(output_folder, config['name'] + '_result' + '.csv') result_submission = [] with torch.no_grad(): pbar = tqdm(total=len(val_loader)) for ori_img, input, target, targets, meta in val_loader: input = input.cuda() target = target.cuda() # compute output if ss_unet_GAN == True: if config['deep_supervision']: output = generator(input)[-1] else: output = generator(input) else: if config['deep_supervision']: output = model(input)[-1] else: output = model(input) out_m = output[:, 1:num_classes, :, :].clone() tar_m = target[:, 1:num_classes, :, :].clone() iou = iou_score(out_m, tar_m) dice = dice_coef(out_m, tar_m) result_submission.append([meta['img_id'][0], iou, dice]) avg_meters['iou'].update(iou, input.size(0)) avg_meters['dice'].update(dice, input.size(0)) output = torch.sigmoid(output).cpu().numpy() masks = target.cpu() for i in range(len(output)): for idx_c in range(num_classes): tmp_mask = np.array(masks[i][idx_c]) mask = np.array(255 * tmp_mask).astype('uint8') mask_out = np.array(255 * output[i][idx_c]).astype('uint8') mask_output = np.zeros((mask_out.shape[0], mask_out.shape[1])) mask_output = mask_output.astype('uint8') mask_ = mask_out > 127 mask_output[mask_] = 255 if idx_c >0: save_GT_RE_mask(output_folder, config, meta, idx_c, i, ori_img, mask, mask_output) postfix = OrderedDict([ ('iou', avg_meters['iou'].avg), ('dice', avg_meters['dice'].avg), ]) pbar.set_postfix(postfix) pbar.update(1) pbar.close() result_save_to_csv_filename(csv_save_name, result_submission) print('IoU: %.4f' % avg_meters['iou'].avg) print('dice: %.4f' % avg_meters['dice'].avg) torch.cuda.empty_cache()
def main(): # config = vars(parse_args_func()) #config_file = "../configs/config_v1.json" args = vars(parse_args_func()) config_file = args['config'] config_dict = json.loads(open(config_file, 'rt').read()) # config_dict = json.loads(open(sys.argv[1], 'rt').read()) file_dict = config_dict['file_path'] config = config_dict['opt_config'] input_folder = file_dict['input_path'] # '../inputs' checkpoint_folder = file_dict['checkpoint_path'] # '../checkpoint' model_folder = file_dict['model_path'] # '../models' if 'False' in config['deep_supervision']: config['deep_supervision'] = False else: config['deep_supervision'] = True if 'False' in config['nesterov']: config['nesterov'] = False else: config['nesterov'] = True if 'None' in config['name']: config['name'] = None if config['name'] is None: config['name'] = '%s_%s_segmodel' % (config['dataset'], config['arch']) os.makedirs(os.path.join(model_folder, '%s' % config['name']), exist_ok=True) print('-' * 20) for key in config: print('%s: %s' % (key, config[key])) print('-' * 20) with open(os.path.join(model_folder, '%s/config.yml' % config['name']), 'w') as f: yaml.dump(config, f) # define loss function (criterion) if config['loss'] == 'BCEWithLogitsLoss': criterion = nn.BCEWithLogitsLoss().cuda() else: criterion = losses.__dict__[config['loss']]().cuda() cudnn.benchmark = True # create model if 'False' in config['resume']: config['resume'] = False else: config['resume'] = True # Data loading code img_ids = glob( os.path.join(input_folder, config['dataset'], 'images', 'training', '*' + config['img_ext'])) train_img_ids = [os.path.splitext(os.path.basename(p))[0] for p in img_ids] img_ids = glob( os.path.join(input_folder, config['val_dataset'], 'images', 'validation', '*' + config['img_ext'])) val_img_ids = [os.path.splitext(os.path.basename(p))[0] for p in img_ids] img_ids = glob( os.path.join(input_folder, config['val_dataset'], 'images', 'test', '*' + config['img_ext'])) test_img_ids = [os.path.splitext(os.path.basename(p))[0] for p in img_ids] mean = [0.485, 0.456, 0.406] std = [0.229, 0.224, 0.225] train_transform = Compose([ # transforms.RandomScale ([config['scale_min'], config['scale_max']]), # transforms.RandomRotate90(), transforms.Rotate([config['rotate_min'], config['rotate_max']], value=mean, mask_value=0), # transforms.GaussianBlur (), transforms.Flip(), # transforms.HorizontalFlip (), transforms.HueSaturationValue(hue_shift_limit=10, sat_shift_limit=10, val_shift_limit=10), transforms.RandomBrightnessContrast(brightness_limit=0.10, contrast_limit=0.10, brightness_by_max=True), transforms.Resize(config['input_h'], config['input_w']), transforms.Normalize(mean=mean, std=std), ]) val_transform = Compose([ transforms.Resize(config['input_h'], config['input_w']), transforms.Normalize(mean=mean, std=std), ]) train_dataset = Dataset(img_ids=train_img_ids, img_dir=os.path.join(input_folder, config['dataset'], 'images', 'training'), mask_dir=os.path.join(input_folder, config['dataset'], 'annotations', 'training'), img_ext=config['img_ext'], mask_ext=config['mask_ext'], num_classes=config['num_classes'], input_channels=config['input_channels'], transform=train_transform) val_dataset = Dataset(img_ids=val_img_ids, img_dir=os.path.join(input_folder, config['dataset'], 'images', 'validation'), mask_dir=os.path.join(input_folder, config['dataset'], 'annotations', 'validation'), img_ext=config['img_ext'], mask_ext=config['mask_ext'], num_classes=config['num_classes'], input_channels=config['input_channels'], transform=val_transform) test_dataset = Dataset(img_ids=val_img_ids, img_dir=os.path.join(input_folder, config['dataset'], 'images', 'test'), mask_dir=os.path.join(input_folder, config['dataset'], 'annotations', 'test'), img_ext=config['img_ext'], mask_ext=config['mask_ext'], num_classes=config['num_classes'], input_channels=config['input_channels'], transform=val_transform) train_loader = torch.utils.data.DataLoader( train_dataset, batch_size=config['batch_size'], shuffle=True, num_workers=config['num_workers'], drop_last=True) val_loader = torch.utils.data.DataLoader( val_dataset, batch_size=1, # config['batch_size'], shuffle=False, num_workers=config['num_workers'], drop_last=False) test_loader = torch.utils.data.DataLoader( test_dataset, batch_size=1, # config['batch_size'], shuffle=False, num_workers=config['num_workers'], drop_last=False) log = OrderedDict([ ('epoch', []), ('lr', []), ('loss', []), ('iou', []), ('dice', []), ('val_loss', []), ('val_iou', []), ('val_dice', []), ]) if not os.path.isdir(checkpoint_folder): os.mkdir(checkpoint_folder) # create generator model #val_config = config_dict['config'] generator_name = config['generator_name'] with open(os.path.join(model_folder, '%s/config.yml' % generator_name), 'r') as f: g_config = yaml.load(f, Loader=yaml.FullLoader) generator = Generator(g_config) generator.initialize_with_srresnet(model_folder, g_config) lr = config['gan_lr'] # Initialize generator's optimizer optimizer_g = torch.optim.Adam(params=filter(lambda p: p.requires_grad, generator.parameters()), lr=lr) #params = filter(lambda p: p.requires_grad, generator.parameters()) #optimizer_g, scheduler_g = optimizer_scheduler(params, config) # Discriminator # Discriminator parameters num_classes = config['num_classes'] kernel_size_d = 3 # kernel size in all convolutional blocks n_channels_d = 64 # number of output channels in the first convolutional block, after which it is doubled in every 2nd block thereafter n_blocks_d = 8 # number of convolutional blocks fc_size_d = 1024 # size of the first fully connected layer discriminator = Discriminator(num_classes, kernel_size=kernel_size_d, n_channels=n_channels_d, n_blocks=n_blocks_d, fc_size=fc_size_d) # Initialize discriminator's optimizer optimizer_d = torch.optim.Adam(params=filter(lambda p: p.requires_grad, discriminator.parameters()), lr=lr) #params = filter(lambda p: p.requires_grad, discriminator.parameters()) #optimizer_d, scheduler_d = optimizer_scheduler(params, config) adversarial_loss_criterion = nn.BCEWithLogitsLoss() content_loss_criterion = nn.MSELoss() generator = generator.cuda() discriminator = discriminator.cuda() #truncated_vgg19 = truncated_vgg19.cuda() content_loss_criterion = content_loss_criterion.cuda() adversarial_loss_criterion = adversarial_loss_criterion.cuda() generator = torch.nn.DataParallel(generator) discriminator = torch.nn.DataParallel(discriminator) if not os.path.isdir(checkpoint_folder): os.mkdir(checkpoint_folder) log_name = config['name'] log_dir = os.path.join(checkpoint_folder, log_name) writer = SummaryWriter(logdir=log_dir) best_iou = 0 trigger = 0 Best_dice = 0 iou_AtBestDice = 0 start_epoch = 0 for epoch in range(start_epoch, config['epochs']): print('Epoch [%d/%d]' % (epoch, config['epochs'])) # train for one epoch train_log = train(epoch, config, train_loader, generator, discriminator, criterion, adversarial_loss_criterion, content_loss_criterion, optimizer_g, optimizer_d) # evaluate on validation set val_log = validate(config, val_loader, generator, criterion) test_log = validate(config, test_loader, generator, criterion) if Best_dice < test_log['dice']: Best_dice = test_log['dice'] iou_AtBestDice = test_log['iou'] print( 'loss %.4f - iou %.4f - dice %.4f - val_loss %.4f - val_iou %.4f - val_dice %.4f - test_iou %.4f - test_dice %.4f - Best_dice %.4f - iou_AtBestDice %.4f' % (train_log['loss'], train_log['iou'], train_log['dice'], val_log['loss'], val_log['iou'], val_log['dice'], test_log['iou'], test_log['dice'], Best_dice, iou_AtBestDice)) save_tensorboard(writer, train_log, val_log, test_log, epoch) log['epoch'].append(epoch) log['lr'].append(config['lr']) log['loss'].append(train_log['loss']) log['iou'].append(train_log['iou']) log['dice'].append(train_log['dice']) log['val_loss'].append(val_log['loss']) log['val_iou'].append(val_log['iou']) log['val_dice'].append(val_log['dice']) pd.DataFrame(log).to_csv(os.path.join(model_folder, '%s/log.csv' % config['name']), index=False) trigger += 1 if test_log['iou'] > best_iou: torch.save( generator.state_dict(), os.path.join(model_folder, '%s/model.pth' % config['name'])) best_iou = test_log['iou'] print("=> saved best model") trigger = 0 # early stopping if config['early_stopping'] >= 0 and trigger >= config[ 'early_stopping']: print("=> early stopping") break torch.cuda.empty_cache()
def main(): config = vars(parse_args()) if config['name'] is None: if config['deep_supervision']: config['name'] = '%s_%s_wDS' % (config['dataset'], config['arch']) else: config['name'] = '%s_%s_woDS' % (config['dataset'], config['arch']) os.makedirs('models/%s' % config['name'], exist_ok=True) print('-' * 20) for key in config: print('%s: %s' % (key, config[key])) print('-' * 20) with open('models/%s/config.yml' % config['name'], 'w') as f: yaml.dump(config, f) # define loss function (criterion) if config['loss'] == 'BCEWithLogitsLoss': criterion = nn.BCEWithLogitsLoss().cuda() else: criterion = losses.__dict__[config['loss']]().cuda() cudnn.benchmark = True # create model print("=> creating model %s" % config['arch']) model = archs.__dict__[config['arch']](config['num_classes'], config['input_channels'], config['deep_supervision']) model = model.cuda() params = filter(lambda p: p.requires_grad, model.parameters()) if config['optimizer'] == 'Adam': optimizer = optim.Adam(params, lr=config['lr'], weight_decay=config['weight_decay']) elif config['optimizer'] == 'SGD': optimizer = optim.SGD(params, lr=config['lr'], momentum=config['momentum'], nesterov=config['nesterov'], weight_decay=config['weight_decay']) else: raise NotImplementedError if config['scheduler'] == 'CosineAnnealingLR': scheduler = lr_scheduler.CosineAnnealingLR(optimizer, T_max=config['epochs'], eta_min=config['min_lr']) elif config['scheduler'] == 'ReduceLROnPlateau': scheduler = lr_scheduler.ReduceLROnPlateau(optimizer, factor=config['factor'], patience=config['patience'], verbose=1, min_lr=config['min_lr']) elif config['scheduler'] == 'MultiStepLR': scheduler = lr_scheduler.MultiStepLR( optimizer, milestones=[int(e) for e in config['milestones'].split(',')], gamma=config['gamma']) elif config['scheduler'] == 'ConstantLR': scheduler = None else: raise NotImplementedError # Data loading code img_ids = glob( os.path.join('inputs', config['dataset'], 'images', '*' + config['img_ext'])) img_ids = [os.path.splitext(os.path.basename(p))[0] for p in img_ids] train_img_ids, val_img_ids = train_test_split(img_ids, test_size=0.2, random_state=41) ####################### train_img_ids = img_ids ####################### train_transform = Compose([ transforms.RandomRotate90(), transforms.Flip(), OneOf([ transforms.HueSaturationValue(), transforms.RandomBrightness(), transforms.RandomContrast(), ], p=1), transforms.Resize(config['input_h'], config['input_w']), transforms.Normalize(), ]) val_transform = Compose([ transforms.Resize(config['input_h'], config['input_w']), transforms.Normalize(), ]) train_dataset = Dataset(img_ids=train_img_ids, img_dir=os.path.join('inputs', config['dataset'], 'images'), mask_dir=os.path.join('inputs', config['dataset'], 'masks'), img_ext=config['img_ext'], mask_ext=config['mask_ext'], num_classes=config['num_classes'], transform=train_transform) val_dataset = Dataset(img_ids=val_img_ids, img_dir=os.path.join('inputs', config['dataset'], 'images'), mask_dir=os.path.join('inputs', config['dataset'], 'masks'), img_ext=config['img_ext'], mask_ext=config['mask_ext'], num_classes=config['num_classes'], transform=val_transform) train_loader = torch.utils.data.DataLoader( train_dataset, batch_size=config['batch_size'], shuffle=True, num_workers=config['num_workers'], drop_last=True) val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=config['batch_size'], shuffle=False, num_workers=config['num_workers'], drop_last=False) log = OrderedDict([ ('epoch', []), ('lr', []), ('loss', []), ('iou', []), ('val_loss', []), ('val_iou', []), ]) best_iou = 0 trigger = 0 for epoch in range(config['epochs']): print('Epoch [%d/%d]' % (epoch, config['epochs'])) # train for one epoch train_log = train(config, train_loader, model, criterion, optimizer) # evaluate on validation set val_log = validate(config, val_loader, model, criterion) if config['scheduler'] == 'CosineAnnealingLR': scheduler.step() elif config['scheduler'] == 'ReduceLROnPlateau': scheduler.step(val_log['loss']) print('loss %.4f - iou %.4f - val_loss %.4f - val_iou %.4f' % (train_log['loss'], train_log['iou'], val_log['loss'], val_log['iou'])) log['epoch'].append(epoch) log['lr'].append(config['lr']) log['loss'].append(train_log['loss']) log['iou'].append(train_log['iou']) log['val_loss'].append(val_log['loss']) log['val_iou'].append(val_log['iou']) pd.DataFrame(log).to_csv('models/%s/log.csv' % config['name'], index=False) trigger += 1 if val_log['iou'] > best_iou: torch.save(model.state_dict(), 'models/%s/model.pth' % config['name']) best_iou = val_log['iou'] print("=> saved best model") trigger = 0 # early stopping if config['early_stopping'] >= 0 and trigger >= config[ 'early_stopping']: print("=> early stopping") break torch.cuda.empty_cache()
def main(): config = vars(parse_args()) if config['name'] is None: config['name'] = '%s_%s' % (config['arch'], datetime.now().strftime('%m%d%H')) if not os.path.exists('models/pose/%s' % config['name']): os.makedirs('models/pose/%s' % config['name']) if config['resume']: with open('models/pose/%s/config.yml' % config['name'], 'r') as f: config = yaml.load(f, Loader=yaml.FullLoader) config['resume'] = True with open('models/pose/%s/config.yml' % config['name'], 'w') as f: yaml.dump(config, f) print('-'*20) for key in config.keys(): print('- %s: %s' % (key, str(config[key]))) print('-'*20) cudnn.benchmark = True df = pd.read_csv('inputs/train.csv') img_ids = df['ImageId'].values pose_df = pd.read_csv('processed/pose_train.csv') pose_df['img_path'] = 'processed/pose_images/train/' + pose_df['img_path'] if config['resume']: checkpoint = torch.load('models/pose/%s/checkpoint.pth.tar' % config['name']) if config['rot'] == 'eular': num_outputs = 3 elif config['rot'] == 'trig': num_outputs = 6 elif config['rot'] == 'quat': num_outputs = 4 else: raise NotImplementedError if config['loss'] == 'L1Loss': criterion = nn.L1Loss().cuda() elif config['loss'] == 'MSELoss': criterion = nn.MSELoss().cuda() else: raise NotImplementedError train_transform = Compose([ transforms.ShiftScaleRotate( shift_limit=config['shift_limit'], scale_limit=0, rotate_limit=0, border_mode=cv2.BORDER_CONSTANT, value=0, p=config['shift_p'] ) if config['shift'] else NoOp(), OneOf([ transforms.HueSaturationValue( hue_shift_limit=config['hue_limit'], sat_shift_limit=config['sat_limit'], val_shift_limit=config['val_limit'], p=config['hsv_p'] ) if config['hsv'] else NoOp(), transforms.RandomBrightness( limit=config['brightness_limit'], p=config['brightness_p'], ) if config['brightness'] else NoOp(), transforms.RandomContrast( limit=config['contrast_limit'], p=config['contrast_p'], ) if config['contrast'] else NoOp(), ], p=1), transforms.ISONoise( p=config['iso_noise_p'], ) if config['iso_noise'] else NoOp(), transforms.CLAHE( p=config['clahe_p'], ) if config['clahe'] else NoOp(), transforms.Resize(config['input_w'], config['input_h']), transforms.Normalize(), ToTensor(), ]) val_transform = Compose([ transforms.Resize(config['input_w'], config['input_h']), transforms.Normalize(), ToTensor(), ]) folds = [] best_losses = [] kf = KFold(n_splits=config['n_splits'], shuffle=True, random_state=41) for fold, (train_idx, val_idx) in enumerate(kf.split(img_ids)): print('Fold [%d/%d]' %(fold + 1, config['n_splits'])) if (config['resume'] and fold < checkpoint['fold'] - 1) or (not config['resume'] and os.path.exists('pose_models/%s/model_%d.pth' % (config['name'], fold+1))): log = pd.read_csv('models/pose/%s/log_%d.csv' %(config['name'], fold+1)) best_loss = log.loc[log['val_loss'].values.argmin(), 'val_loss'] # best_loss, best_score = log.loc[log['val_loss'].values.argmin(), ['val_loss', 'val_score']].values folds.append(str(fold + 1)) best_losses.append(best_loss) # best_scores.append(best_score) continue train_img_ids, val_img_ids = img_ids[train_idx], img_ids[val_idx] train_img_paths = [] train_labels = [] for img_id in train_img_ids: tmp = pose_df.loc[pose_df.ImageId == img_id] img_path = tmp['img_path'].values train_img_paths.append(img_path) yaw = tmp['yaw'].values pitch = tmp['pitch'].values roll = tmp['roll'].values roll = rotate(roll, np.pi) if config['rot'] == 'eular': label = np.array([ yaw, pitch, roll ]).T elif config['rot'] == 'trig': label = np.array([ np.cos(yaw), np.sin(yaw), np.cos(pitch), np.sin(pitch), np.cos(roll), np.sin(roll), ]).T elif config['rot'] == 'quat': raise NotImplementedError else: raise NotImplementedError train_labels.append(label) train_img_paths = np.hstack(train_img_paths) train_labels = np.vstack(train_labels) val_img_paths = [] val_labels = [] for img_id in val_img_ids: tmp = pose_df.loc[pose_df.ImageId == img_id] img_path = tmp['img_path'].values val_img_paths.append(img_path) yaw = tmp['yaw'].values pitch = tmp['pitch'].values roll = tmp['roll'].values roll = rotate(roll, np.pi) if config['rot'] == 'eular': label = np.array([ yaw, pitch, roll ]).T elif config['rot'] == 'trig': label = np.array([ np.cos(yaw), np.sin(yaw), np.cos(pitch), np.sin(pitch), np.cos(roll), np.sin(roll), ]).T elif config['rot'] == 'quat': raise NotImplementedError else: raise NotImplementedError val_labels.append(label) val_img_paths = np.hstack(val_img_paths) val_labels = np.vstack(val_labels) # train train_set = PoseDataset( train_img_paths, train_labels, transform=train_transform, ) train_loader = torch.utils.data.DataLoader( train_set, batch_size=config['batch_size'], shuffle=True, num_workers=config['num_workers'], # pin_memory=True, ) val_set = PoseDataset( val_img_paths, val_labels, transform=val_transform, ) val_loader = torch.utils.data.DataLoader( val_set, batch_size=config['batch_size'], shuffle=False, num_workers=config['num_workers'], # pin_memory=True, ) # create model model = get_pose_model(config['arch'], num_outputs=num_outputs, freeze_bn=config['freeze_bn']) model = model.cuda() params = filter(lambda p: p.requires_grad, model.parameters()) if config['optimizer'] == 'Adam': optimizer = optim.Adam(params, lr=config['lr'], weight_decay=config['weight_decay']) elif config['optimizer'] == 'AdamW': optimizer = optim.AdamW(params, lr=config['lr'], weight_decay=config['weight_decay']) elif config['optimizer'] == 'RAdam': optimizer = RAdam(params, lr=config['lr'], weight_decay=config['weight_decay']) elif config['optimizer'] == 'SGD': optimizer = optim.SGD(params, lr=config['lr'], momentum=config['momentum'], nesterov=config['nesterov'], weight_decay=config['weight_decay']) else: raise NotImplementedError if config['scheduler'] == 'CosineAnnealingLR': scheduler = lr_scheduler.CosineAnnealingLR(optimizer, T_max=config['epochs'], eta_min=config['min_lr']) elif config['scheduler'] == 'ReduceLROnPlateau': scheduler = lr_scheduler.ReduceLROnPlateau(optimizer, factor=config['factor'], patience=config['patience'], verbose=1, min_lr=config['min_lr']) elif config['scheduler'] == 'MultiStepLR': scheduler = lr_scheduler.MultiStepLR(optimizer, milestones=[int(e) for e in config['milestones'].split(',')], gamma=config['gamma']) else: raise NotImplementedError log = { 'epoch': [], 'loss': [], # 'score': [], 'val_loss': [], # 'val_score': [], } best_loss = float('inf') # best_score = float('inf') start_epoch = 0 if config['resume'] and fold == checkpoint['fold'] - 1: model.load_state_dict(checkpoint['state_dict']) optimizer.load_state_dict(checkpoint['optimizer']) scheduler.load_state_dict(checkpoint['scheduler']) start_epoch = checkpoint['epoch'] log = pd.read_csv('models/pose/%s/log_%d.csv' % (config['name'], fold+1)).to_dict(orient='list') best_loss = checkpoint['best_loss'] for epoch in range(start_epoch, config['epochs']): print('Epoch [%d/%d]' % (epoch + 1, config['epochs'])) # train for one epoch train_loss = train(config, train_loader, model, criterion, optimizer, epoch) # evaluate on validation set val_loss = validate(config, val_loader, model, criterion) if config['scheduler'] == 'CosineAnnealingLR': scheduler.step() elif config['scheduler'] == 'ReduceLROnPlateau': scheduler.step(val_loss) print('loss %.4f - val_loss %.4f' % (train_loss, val_loss)) # print('loss %.4f - score %.4f - val_loss %.4f - val_score %.4f' # % (train_loss, train_score, val_loss, val_score)) log['epoch'].append(epoch) log['loss'].append(train_loss) # log['score'].append(train_score) log['val_loss'].append(val_loss) # log['val_score'].append(val_score) pd.DataFrame(log).to_csv('models/pose/%s/log_%d.csv' % (config['name'], fold+1), index=False) if val_loss < best_loss: torch.save(model.state_dict(), 'models/pose/%s/model_%d.pth' % (config['name'], fold+1)) best_loss = val_loss # best_score = val_score print("=> saved best model") state = { 'fold': fold + 1, 'epoch': epoch + 1, 'state_dict': model.state_dict(), 'best_loss': best_loss, 'optimizer': optimizer.state_dict(), 'scheduler': scheduler.state_dict(), } torch.save(state, 'models/pose/%s/checkpoint.pth.tar' % config['name']) print('val_loss: %f' % best_loss) # print('val_score: %f' % best_score) folds.append(str(fold + 1)) best_losses.append(best_loss) # best_scores.append(best_score) results = pd.DataFrame({ 'fold': folds + ['mean'], 'best_loss': best_losses + [np.mean(best_losses)], # 'best_score': best_scores + [np.mean(best_scores)], }) print(results) results.to_csv('models/pose/%s/results.csv' % config['name'], index=False) del model torch.cuda.empty_cache() del train_set, train_loader del val_set, val_loader gc.collect() if not config['cv']: break
def main(): args = parse_args() with open('models/%s/config.yml' % args.name, 'r') as f: config = yaml.load(f, Loader=yaml.FullLoader) print('-' * 20) for key in config.keys(): print('%s: %s' % (key, str(config[key]))) print('-' * 20) cudnn.benchmark = True # create model print("=> creating model %s" % config['arch']) model = archs.__dict__[config['arch']](config['num_classes'], config['input_channels'], config['deep_supervision']) model = model.cuda() # Data loading code img_ids = glob( os.path.join('inputs', config['dataset'], 'test\\images', '*' + config['img_ext'])) ############ 바꿈 img_ids = [os.path.splitext(os.path.basename(p))[0] for p in img_ids] val_img_ids = img_ids model.load_state_dict(torch.load('models/%s/model.pth' % config['name'])) model.eval() val_transform = Compose([ transforms.Resize(config['input_h'], config['input_w']), transforms.Normalize(), ]) val_dataset = Dataset( img_ids=val_img_ids, img_dir=os.path.join('inputs', config['dataset'], 'test\\images'), ############ 바꿈 mask_dir=os.path.join('inputs', config['dataset'], 'test\\masks'), ############ 바꿈 img_ext=config['img_ext'], mask_ext=config['mask_ext'], num_classes=config['num_classes'], transform=val_transform) val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=config['batch_size'], shuffle=False, num_workers=config['num_workers'], drop_last=False) avg_meter = AverageMeter() for c in range(config['num_classes']): os.makedirs(os.path.join('outputs', config['name'], str(c)), exist_ok=True) with torch.no_grad(): for input, target, meta in tqdm(val_loader, total=len(val_loader)): input = input.cuda() target = target.cuda() # compute output if config['deep_supervision']: output = model(input)[-1] else: output = model(input) iou = iou_score(output, target) avg_meter.update(iou, input.size(0)) output = torch.sigmoid(output).cpu().numpy() for i in range(len(output)): for c in range(config['num_classes']): cv2.imwrite( os.path.join('outputs', config['name'], str(c), meta['img_id'][i] + '.jpg'), (output[i, c] * 255).astype('uint8')) print('IoU: %.4f' % avg_meter.avg) torch.cuda.empty_cache()
def Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), max_pixel_value=255.0): return transforms.Normalize(mean=mean, std=std, max_pixel_value=max_pixel_value)
def main(): args = parse_args() with open('models/pose/%s/config.yml' % args.pose_name, 'r') as f: config = yaml.load(f, Loader=yaml.FullLoader) print('-' * 20) for key in config.keys(): print('%s: %s' % (key, str(config[key]))) print('-' * 20) cudnn.benchmark = True df = pd.read_csv('inputs/train.csv') img_ids = df['ImageId'].values img_paths = np.array('inputs/train_images/' + df['ImageId'].values + '.jpg') mask_paths = np.array('inputs/train_masks/' + df['ImageId'].values + '.jpg') labels = np.array( [convert_str_to_labels(s) for s in df['PredictionString']]) with open('outputs/decoded/val/%s.json' % args.det_name, 'r') as f: dets = json.load(f) if config['rot'] == 'eular': num_outputs = 3 elif config['rot'] == 'trig': num_outputs = 6 elif config['rot'] == 'quat': num_outputs = 4 else: raise NotImplementedError test_transform = Compose([ transforms.Resize(config['input_w'], config['input_h']), transforms.Normalize(), ToTensor(), ]) det_df = { 'ImageId': [], 'img_path': [], 'det': [], 'mask': [], } name = '%s_%.2f' % (args.det_name, args.score_th) if args.nms: name += '_nms%.2f' % args.nms_th output_dir = 'processed/pose_images/val/%s' % name os.makedirs(output_dir, exist_ok=True) df = [] kf = KFold(n_splits=config['n_splits'], shuffle=True, random_state=41) for fold, (train_idx, val_idx) in enumerate(kf.split(img_paths)): print('Fold [%d/%d]' % (fold + 1, config['n_splits'])) # create model model = get_pose_model(config['arch'], num_outputs=num_outputs, freeze_bn=config['freeze_bn']) model = model.cuda() model_path = 'models/pose/%s/model_%d.pth' % (config['name'], fold + 1) if not os.path.exists(model_path): print('%s is not exists.' % model_path) continue model.load_state_dict(torch.load(model_path)) model.eval() val_img_ids = img_ids[val_idx] val_img_paths = img_paths[val_idx] fold_det_df = { 'ImageId': [], 'img_path': [], 'det': [], 'mask': [], } for img_id, img_path in tqdm(zip(val_img_ids, val_img_paths), total=len(val_img_ids)): img = cv2.imread(img_path) height, width = img.shape[:2] det = np.array(dets[img_id]) det = det[det[:, 6] > args.score_th] if args.nms: det = nms(det, dist_th=args.nms_th) for k in range(len(det)): pitch, yaw, roll, x, y, z, score, w, h = det[k] fold_det_df['ImageId'].append(img_id) fold_det_df['det'].append(det[k]) output_path = '%s_%d.jpg' % (img_id, k) fold_det_df['img_path'].append(output_path) x, y = convert_3d_to_2d(x, y, z) w *= 1.1 h *= 1.1 xmin = int(round(x - w / 2)) xmax = int(round(x + w / 2)) ymin = int(round(y - h / 2)) ymax = int(round(y + h / 2)) cropped_img = img[ymin:ymax, xmin:xmax] if cropped_img.shape[0] > 0 and cropped_img.shape[1] > 0: cv2.imwrite(os.path.join(output_dir, output_path), cropped_img) fold_det_df['mask'].append(1) else: fold_det_df['mask'].append(0) fold_det_df = pd.DataFrame(fold_det_df) test_set = PoseDataset(output_dir + '/' + fold_det_df['img_path'].values, fold_det_df['det'].values, transform=test_transform, masks=fold_det_df['mask'].values) test_loader = torch.utils.data.DataLoader( test_set, batch_size=config['batch_size'], shuffle=False, num_workers=config['num_workers'], # pin_memory=True, ) fold_dets = [] with torch.no_grad(): for input, batch_det, mask in tqdm(test_loader, total=len(test_loader)): input = input.cuda() batch_det = batch_det.numpy() mask = mask.numpy() output = model(input) output = output.cpu() if config['rot'] == 'trig': yaw = torch.atan2(output[..., 1:2], output[..., 0:1]) pitch = torch.atan2(output[..., 3:4], output[..., 2:3]) roll = torch.atan2(output[..., 5:6], output[..., 4:5]) roll = rotate(roll, -np.pi) pitch = pitch.cpu().numpy()[:, 0] yaw = yaw.cpu().numpy()[:, 0] roll = roll.cpu().numpy()[:, 0] batch_det[mask, 0] = pitch[mask] batch_det[mask, 1] = yaw[mask] batch_det[mask, 2] = roll[mask] fold_dets.append(batch_det) fold_dets = np.vstack(fold_dets) fold_det_df['det'] = fold_dets.tolist() fold_det_df = fold_det_df.groupby('ImageId')['det'].apply(list) fold_det_df = pd.DataFrame({ 'ImageId': fold_det_df.index.values, 'PredictionString': fold_det_df.values, }) df.append(fold_det_df) break df = pd.concat(df).reset_index(drop=True) for i in tqdm(range(len(df))): img_id = df.loc[i, 'ImageId'] det = np.array(df.loc[i, 'PredictionString']) if args.show: img = cv2.imread('inputs/train_images/%s.jpg' % img_id) img_pred = visualize(img, det) plt.imshow(img_pred[..., ::-1]) plt.show() df.loc[i, 'PredictionString'] = convert_labels_to_str(det[:, :7]) name += '_%s' % args.pose_name df.to_csv('outputs/submissions/val/%s.csv' % name, index=False)