def transform_v3(config): train_transforms = Compose([ ImageCompression(quality_lower=60, quality_upper=100, p=0.5), GaussNoise(p=1), GaussianBlur(blur_limit=3, p=1), HorizontalFlip(), Resize(config.image_size, config.image_size), OneOf([RandomBrightnessContrast(), FancyPCA(), HueSaturationValue()], p=1), ShiftScaleRotate(shift_limit=0.1, scale_limit=0.2, rotate_limit=10, border_mode=cv2.BORDER_CONSTANT, p=1), ToTensor() ]) test_transforms = Compose([ GaussNoise(p=1), GaussianBlur(blur_limit=3, p=1), Resize(config.image_size, config.image_size), OneOf([RandomBrightnessContrast(), FancyPCA(), HueSaturationValue()], p=1), ToTensor() ]) return train_transforms, test_transforms
def create_train_transforms(size=300): return Compose([ ImageCompression(quality_lower=60, quality_upper=100, p=0.5), GaussNoise(p=0.1), GaussianBlur(blur_limit=3, p=0.05), HorizontalFlip(), OneOf([ IsotropicResize(max_side=size, interpolation_down=cv2.INTER_AREA, interpolation_up=cv2.INTER_CUBIC), IsotropicResize(max_side=size, interpolation_down=cv2.INTER_AREA, interpolation_up=cv2.INTER_LINEAR), IsotropicResize(max_side=size, interpolation_down=cv2.INTER_LINEAR, interpolation_up=cv2.INTER_LINEAR), ], p=1), PadIfNeeded(min_height=size, min_width=size, border_mode=cv2.BORDER_CONSTANT), OneOf([RandomBrightnessContrast(), FancyPCA(), HueSaturationValue()], p=0.7), ToGray(p=0.2), ShiftScaleRotate(shift_limit=0.1, scale_limit=0.2, rotate_limit=10, border_mode=cv2.BORDER_CONSTANT, p=0.5), ])
def create_train_transforms(size=300): # defining an augmentation pipeline # this will return a transform function that will perform image augmentation. return Compose([ # Decrease Jpeg, WebP compression of an image # with the quality_lower parameter as the lower bound on the image quality # and the quality_upper as the upper bound on the image quality ImageCompression(quality_lower=60, quality_upper=100, p=0.5), # used to apply Gaussian noise to the input picture # with p as the probability of applying the transform GaussNoise(p=0.1), # used to blur the input image using a Gaussian filter with a random kernel size # with the blur_limit as the maximum Gaussian kernel size for blurring the input image GaussianBlur(blur_limit=3, p=0.05), # flips the input image horizontally around the y-axis HorizontalFlip(), # Select one of transforms to apply OneOf([ IsotropicResize(max_side=size, interpolation_down=cv2.INTER_AREA, interpolation_up=cv2.INTER_CUBIC), IsotropicResize(max_side=size, interpolation_down=cv2.INTER_AREA, interpolation_up=cv2.INTER_LINEAR), IsotropicResize(max_side=size, interpolation_down=cv2.INTER_LINEAR, interpolation_up=cv2.INTER_LINEAR), ], p=1), # Pad side of the image / max if side is less than desired number PadIfNeeded(min_height=size, min_width=size, border_mode=cv2.BORDER_CONSTANT), # Select one of the following transforms to apply: # RandomBrightnessContrast: used to randomly change brightness and contrast of the input image # FancyPCA: Augment RGB image using FancyPCA # HueSaturationValue: Randomly change hue, saturation and value of the input image OneOf([RandomBrightnessContrast(), FancyPCA(), HueSaturationValue()], p=0.7), # this converts the input RGB image to grayscale. If the mean pixel value for the resulting image is greater than 127, invert the resulting grayscale image. ToGray(p=0.2), # this randomly apply affine transforms: translate, scale and rotate the input. ShiftScaleRotate(shift_limit=0.1, scale_limit=0.2, rotate_limit=10, border_mode=cv2.BORDER_CONSTANT, p=0.5), ])
def __init__(self, root_path): self.folder_name = [ name for name in os.listdir(root_path) if os.path.isdir(os.path.join(root_path, name)) ] #os.listdir(root_path)[:-1] self.root = root_path #self.image_paths = list(Path(self.root).rglob('*.jpg')) self.json_paths = os.path.join(root_path, 'metadata.json') # 1 with open(self.json_paths) as json_file: self.json_data = json.load(json_file) self.transform = Compose([ Resize(size, size), ImageCompression(quality_lower=60, quality_upper=100, p=0.5), GaussNoise(p=0.1), GaussianBlur(blur_limit=3, p=0.05), HorizontalFlip(p=0.5), OneOf([ IsotropicResize(max_side=size, interpolation_down=cv2.INTER_AREA, interpolation_up=cv2.INTER_CUBIC), IsotropicResize(max_side=size, interpolation_down=cv2.INTER_AREA, interpolation_up=cv2.INTER_LINEAR), IsotropicResize(max_side=size, interpolation_down=cv2.INTER_LINEAR, interpolation_up=cv2.INTER_LINEAR), ], p=0.7), PadIfNeeded(min_height=size, min_width=size, border_mode=cv2.BORDER_CONSTANT), OneOf( [RandomBrightnessContrast(), FancyPCA(), HueSaturationValue()], p=0.7), ToGray(p=0.1), ShiftScaleRotate(shift_limit=0.1, scale_limit=0.2, rotate_limit=10, border_mode=cv2.BORDER_CONSTANT, p=0.5), ]) self.normalize = { "mean": [0.485, 0.456, 0.406], "std": [0.229, 0.224, 0.225] } #self.len = len(self.image_paths) #folder len self.len = len(self.folder_name)
def create_train_transforms(size): return Compose([ # ImageCompression(quality_lower=60, quality_upper=100, p=0.5), GaussNoise(p=0.1), GaussianBlur(blur_limit=3, p=0.05), HorizontalFlip(), RandomRotate90(), Resize(height=size[0], width=size[1]), PadIfNeeded(min_height=size[0], min_width=size[1], border_mode=cv2.BORDER_CONSTANT), OneOf([RandomBrightnessContrast(), FancyPCA(), HueSaturationValue()], p=0.7), ToGray(p=0.1), ShiftScaleRotate(shift_limit=0.1, scale_limit=0.2, rotate_limit=10, border_mode=cv2.BORDER_CONSTANT, p=0.5), Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)), ToTensorV2() ])
WeatherTfms = RandomSunFlare(src_radius=80, p=0.1) NoiseTfms = OneOf( [ GaussNoise(p=0.6), IAAAdditiveGaussianNoise(p=0.4), # stronger JpegCompression(quality_lower=25, quality_upper=55, p=0.2) ], p=0.25) ColorTonesTfms = OneOf([ToSepia(), ToGray()], p=0.3) ColorChannelTfms = OneOf( [ChannelShuffle(), HueSaturationValue(val_shift_limit=5), RGBShift()], p=0.3) LightingTfms = OneOf( [RandomContrast(p=0.1), RandomBrightness(p=0.1), CLAHE(p=0.8)], p=0.3) OtherTfms = FancyPCA(alpha=0.4, p=0.4) # Cell Tfms = Compose([ BlurringTfms, StyleTfms, WeatherTfms, NoiseTfms, ColorTonesTfms, ColorChannelTfms, LightingTfms, OtherTfms ])
def transform(image, mask, image_name, mask_name): x, y = image, mask rand = random.uniform(0, 1) if (rand > 0.5): images_name = [f"{image_name}"] masks_name = [f"{mask_name}"] images_aug = [x] masks_aug = [y] it = iter(images_name) it2 = iter(images_aug) imagedict = dict(zip(it, it2)) it = iter(masks_name) it2 = iter(masks_aug) masksdict = dict(zip(it, it2)) return imagedict, masksdict mask_density = np.count_nonzero(y) ## Augmenting only images with Gloms if (mask_density > 0): try: h, w, c = x.shape except Exception as e: image = image[:-1] x, y = image, mask h, w, c = x.shape aug = Blur(p=1, blur_limit=3) augmented = aug(image=x, mask=y) x0 = augmented['image'] y0 = augmented['mask'] # aug = CenterCrop(p=1, height=32, width=32) # augmented = aug(image=x, mask=y) # x1 = augmented['image'] # y1 = augmented['mask'] ## Horizontal Flip aug = HorizontalFlip(p=1) augmented = aug(image=x, mask=y) x2 = augmented['image'] y2 = augmented['mask'] aug = VerticalFlip(p=1) augmented = aug(image=x, mask=y) x3 = augmented['image'] y3 = augmented['mask'] # aug = Normalize(p=1) # augmented = aug(image=x, mask=y) # x4 = augmented['image'] # y4 = augmented['mask'] aug = Transpose(p=1) augmented = aug(image=x, mask=y) x5 = augmented['image'] y5 = augmented['mask'] aug = RandomGamma(p=1) augmented = aug(image=x, mask=y) x6 = augmented['image'] y6 = augmented['mask'] ## Optical Distortion aug = OpticalDistortion(p=1, distort_limit=2, shift_limit=0.5) augmented = aug(image=x, mask=y) x7 = augmented['image'] y7 = augmented['mask'] ## Grid Distortion aug = GridDistortion(p=1) augmented = aug(image=x, mask=y) x8 = augmented['image'] y8 = augmented['mask'] aug = RandomGridShuffle(p=1) augmented = aug(image=x, mask=y) x9 = augmented['image'] y9 = augmented['mask'] aug = HueSaturationValue(p=1) augmented = aug(image=x, mask=y) x10 = augmented['image'] y10 = augmented['mask'] # aug = PadIfNeeded(p=1) # augmented = aug(image=x, mask=y) # x11 = augmented['image'] # y11 = augmented['mask'] aug = RGBShift(p=1) augmented = aug(image=x, mask=y) x12 = augmented['image'] y12 = augmented['mask'] ## Random Brightness aug = RandomBrightness(p=1) augmented = aug(image=x, mask=y) x13 = augmented['image'] y13 = augmented['mask'] ## Random Contrast aug = RandomContrast(p=1) augmented = aug(image=x, mask=y) x14 = augmented['image'] y14 = augmented['mask'] #aug = MotionBlur(p=1) #augmented = aug(image=x, mask=y) # x15 = augmented['image'] # y15 = augmented['mask'] aug = MedianBlur(p=1, blur_limit=5) augmented = aug(image=x, mask=y) x16 = augmented['image'] y16 = augmented['mask'] aug = GaussianBlur(p=1, blur_limit=3) augmented = aug(image=x, mask=y) x17 = augmented['image'] y17 = augmented['mask'] aug = GaussNoise(p=1) augmented = aug(image=x, mask=y) x18 = augmented['image'] y18 = augmented['mask'] aug = GlassBlur(p=1) augmented = aug(image=x, mask=y) x19 = augmented['image'] y19 = augmented['mask'] aug = CLAHE(clip_limit=1.0, tile_grid_size=(8, 8), always_apply=False, p=1) augmented = aug(image=x, mask=y) x20 = augmented['image'] y20 = augmented['mask'] aug = ChannelShuffle(p=1) augmented = aug(image=x, mask=y) x21 = augmented['image'] y21 = augmented['mask'] aug = ToGray(p=1) augmented = aug(image=x, mask=y) x22 = augmented['image'] y22 = augmented['mask'] aug = ToSepia(p=1) augmented = aug(image=x, mask=y) x23 = augmented['image'] y23 = augmented['mask'] aug = JpegCompression(p=1) augmented = aug(image=x, mask=y) x24 = augmented['image'] y24 = augmented['mask'] aug = ImageCompression(p=1) augmented = aug(image=x, mask=y) x25 = augmented['image'] y25 = augmented['mask'] aug = Cutout(p=1) augmented = aug(image=x, mask=y) x26 = augmented['image'] y26 = augmented['mask'] # aug = CoarseDropout(p=1, max_holes=8, max_height=32, max_width=32) # augmented = aug(image=x, mask=y) # x27 = augmented['image'] # y27 = augmented['mask'] # aug = ToFloat(p=1) # augmented = aug(image=x, mask=y) # x28 = augmented['image'] # y28 = augmented['mask'] aug = FromFloat(p=1) augmented = aug(image=x, mask=y) x29 = augmented['image'] y29 = augmented['mask'] ## Random Brightness and Contrast aug = RandomBrightnessContrast(p=1) augmented = aug(image=x, mask=y) x30 = augmented['image'] y30 = augmented['mask'] aug = RandomSnow(p=1) augmented = aug(image=x, mask=y) x31 = augmented['image'] y31 = augmented['mask'] aug = RandomRain(p=1) augmented = aug(image=x, mask=y) x32 = augmented['image'] y32 = augmented['mask'] aug = RandomFog(p=1) augmented = aug(image=x, mask=y) x33 = augmented['image'] y33 = augmented['mask'] aug = RandomSunFlare(p=1) augmented = aug(image=x, mask=y) x34 = augmented['image'] y34 = augmented['mask'] aug = RandomShadow(p=1) augmented = aug(image=x, mask=y) x35 = augmented['image'] y35 = augmented['mask'] aug = Lambda(p=1) augmented = aug(image=x, mask=y) x36 = augmented['image'] y36 = augmented['mask'] aug = ChannelDropout(p=1) augmented = aug(image=x, mask=y) x37 = augmented['image'] y37 = augmented['mask'] aug = ISONoise(p=1) augmented = aug(image=x, mask=y) x38 = augmented['image'] y38 = augmented['mask'] aug = Solarize(p=1) augmented = aug(image=x, mask=y) x39 = augmented['image'] y39 = augmented['mask'] aug = Equalize(p=1) augmented = aug(image=x, mask=y) x40 = augmented['image'] y40 = augmented['mask'] aug = Posterize(p=1) augmented = aug(image=x, mask=y) x41 = augmented['image'] y41 = augmented['mask'] aug = Downscale(p=1) augmented = aug(image=x, mask=y) x42 = augmented['image'] y42 = augmented['mask'] aug = MultiplicativeNoise(p=1) augmented = aug(image=x, mask=y) x43 = augmented['image'] y43 = augmented['mask'] aug = FancyPCA(p=1) augmented = aug(image=x, mask=y) x44 = augmented['image'] y44 = augmented['mask'] # aug = MaskDropout(p=1) # augmented = aug(image=x, mask=y) # x45 = augmented['image'] # y45 = augmented['mask'] aug = GridDropout(p=1) augmented = aug(image=x, mask=y) x46 = augmented['image'] y46 = augmented['mask'] aug = ColorJitter(p=1) augmented = aug(image=x, mask=y) x47 = augmented['image'] y47 = augmented['mask'] ## ElasticTransform aug = ElasticTransform(p=1, alpha=120, sigma=512 * 0.05, alpha_affine=512 * 0.03) augmented = aug(image=x, mask=y) x50 = augmented['image'] y50 = augmented['mask'] aug = CropNonEmptyMaskIfExists(p=1, height=22, width=32) augmented = aug(image=x, mask=y) x51 = augmented['image'] y51 = augmented['mask'] aug = IAAAffine(p=1) augmented = aug(image=x, mask=y) x52 = augmented['image'] y52 = augmented['mask'] # aug = IAACropAndPad(p=1) # augmented = aug(image=x, mask=y) # x53 = augmented['image'] # y53 = augmented['mask'] aug = IAAFliplr(p=1) augmented = aug(image=x, mask=y) x54 = augmented['image'] y54 = augmented['mask'] aug = IAAFlipud(p=1) augmented = aug(image=x, mask=y) x55 = augmented['image'] y55 = augmented['mask'] aug = IAAPerspective(p=1) augmented = aug(image=x, mask=y) x56 = augmented['image'] y56 = augmented['mask'] aug = IAAPiecewiseAffine(p=1) augmented = aug(image=x, mask=y) x57 = augmented['image'] y57 = augmented['mask'] aug = LongestMaxSize(p=1) augmented = aug(image=x, mask=y) x58 = augmented['image'] y58 = augmented['mask'] aug = NoOp(p=1) augmented = aug(image=x, mask=y) x59 = augmented['image'] y59 = augmented['mask'] # aug = RandomCrop(p=1, height=22, width=22) # augmented = aug(image=x, mask=y) # x61 = augmented['image'] # y61 = augmented['mask'] # aug = RandomResizedCrop(p=1, height=22, width=20) # augmented = aug(image=x, mask=y) # x63 = augmented['image'] # y63 = augmented['mask'] aug = RandomScale(p=1) augmented = aug(image=x, mask=y) x64 = augmented['image'] y64 = augmented['mask'] # aug = RandomSizedCrop(p=1, height=22, width=20, min_max_height = [32,32]) # augmented = aug(image=x, mask=y) # x66 = augmented['image'] # y66 = augmented['mask'] # aug = Resize(p=1, height=22, width=20) # augmented = aug(image=x, mask=y) # x67 = augmented['image'] # y67 = augmented['mask'] aug = Rotate(p=1) augmented = aug(image=x, mask=y) x68 = augmented['image'] y68 = augmented['mask'] aug = ShiftScaleRotate(p=1) augmented = aug(image=x, mask=y) x69 = augmented['image'] y69 = augmented['mask'] aug = SmallestMaxSize(p=1) augmented = aug(image=x, mask=y) x70 = augmented['image'] y70 = augmented['mask'] images_aug.extend([ x, x0, x2, x3, x5, x6, x7, x8, x9, x10, x12, x13, x14, x16, x17, x18, x19, x20, x21, x22, x23, x24, x25, x26, x29, x30, x31, x32, x33, x34, x35, x36, x37, x38, x39, x40, x41, x42, x43, x44, x46, x47, x50, x51, x52, x54, x55, x56, x57, x58, x59, x64, x68, x69, x70 ]) masks_aug.extend([ y, y0, y2, y3, y5, y6, y7, y8, y9, y10, y12, y13, y14, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, y26, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, y41, y42, y43, y44, y46, y47, y50, y51, y52, y54, y55, y56, y57, y58, y59, y64, y68, y69, y70 ]) idx = -1 images_name = [] masks_name = [] for i, m in zip(images_aug, masks_aug): if idx == -1: tmp_image_name = f"{image_name}" tmp_mask_name = f"{mask_name}" else: tmp_image_name = f"{image_name}_{smalllist[idx]}" tmp_mask_name = f"{mask_name}_{smalllist[idx]}" images_name.extend(tmp_image_name) masks_name.extend(tmp_mask_name) idx += 1 it = iter(images_name) it2 = iter(images_aug) imagedict = dict(zip(it, it2)) it = iter(masks_name) it2 = iter(masks_aug) masksdict = dict(zip(it, it2)) return imagedict, masksdict
import cv2 from albu import IsotropicResize size = 256 # Declare an augmentation pipeline transform = Compose([ ImageCompression(quality_lower=60, quality_upper=100, p=0.5), GaussNoise(p=0.1), GaussianBlur(blur_limit=3, p=0.05), HorizontalFlip(p=0.5), OneOf([ IsotropicResize(max_side=size, interpolation_down=cv2.INTER_AREA, interpolation_up=cv2.INTER_CUBIC), IsotropicResize(max_side=size, interpolation_down=cv2.INTER_AREA, interpolation_up=cv2.INTER_LINEAR), IsotropicResize(max_side=size, interpolation_down=cv2.INTER_LINEAR, interpolation_up=cv2.INTER_LINEAR), ], p=0.7), PadIfNeeded(min_height=size, min_width=size, border_mode=cv2.BORDER_CONSTANT), OneOf([RandomBrightnessContrast(), FancyPCA(), HueSaturationValue()], p=0.7), ToGray(p=0.2), ShiftScaleRotate(shift_limit=0.1, scale_limit=0.2, rotate_limit=10, border_mode=cv2.BORDER_CONSTANT, p=0.5), ]) # Read an image with OpenCV and convert it to the RGB colorspace image = cv2.imread("/home/ubuntu/dataset/dfdc_image/train/dfdc_train_part_0/aaqaifqrwn/frame0.jpg") #image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # Augment an image transformed = transform(image=image) transformed_image = transformed["image"] cv2.imwrite('image.jpg', transformed_image)
OpticalDistortion(distort_limit=1.0, shift_limit=1.0, p=0.2), HueSaturationValue(hue_shift_limit=20, sat_shift_limit=30, val_shift_limit=20, p=0.2), RGBShift(r_shift_limit=20, g_shift_limit=20, b_shift_limit=20, p=0.15), RandomBrightnessContrast(p=0.2), MotionBlur(blur_limit=7, p=0.2), GaussianBlur(blur_limit=7, p=0.15), CLAHE(p=0.05), ChannelShuffle(p=0.05), ToGray(p=0.1), ImageCompression(quality_lower=10, quality_upper=100, p=0.15), CoarseDropout(max_holes=32, max_height=12, max_width=12, p=0.05), Downscale(p=0.3), FancyPCA(alpha=0.4, p=0.1), Posterize(num_bits=4, p=0.03), Equalize(p=0.05), ISONoise(color_shift=(0.1, 0.5), p=0.07), RandomFog(p=0.03) ] BACKGROUNDS_PATHS = glob(BACKGROUNDS_WILDRCARD) BACKGROUNDS = [ load_image(path, cv.COLOR_BGR2RGB) for path in BACKGROUNDS_PATHS ] ENTRY_TRANSFORMATION = EntryTransformation(class_mapping=CLASS_MAPPINGS, target_size=MODEL_INPUT_SIZE, backgrounds=BACKGROUNDS)
transformed_image = transform(image=image) elif augmentation == 'to_gray': transform = ToGray(always_apply=True) transformed_image = transform(image=image)['image'] elif augmentation == 'posterize': transform = Posterize(always_apply=True, num_bits=2) transformed_image = transform(image=image)['image'] elif augmentation == 'to_sepia': transform = ToSepia(always_apply=True) transformed_image = transform(image=image)['image'] elif augmentation == 'fancy_pca': transform = FancyPCA(always_apply=True, alpha=1.0) transformed_image = transform(image=image)['image'] elif augmentation == 'rgb_shift': transform = RGBShift(always_apply=True) transformed_image = transform(image=image)['image'] elif augmentation == 'change_color_temperature': transform = iaa.ChangeColorTemperature((1100, 10000)) transformed_image = transform(image=image) elif augmentation == 'kmeans_color_quantization': transform = iaa.KMeansColorQuantization() transformed_image = transform(image=image) elif augmentation == 'uniform_color_quantization':