示例#1
0
    def test_ep_tight(self):
        theta = DirichletParameterNode(
            'theta',
            Factor(['X', 'ZDummy'], {
                'X': ['same', 'diff'],
                'ZDummy': ['dummy']
            }, {
                ('same', 'dummy'): 1,
                ('diff', 'dummy'): 1,
            },
                   logarithmetic=False))

        X = DiscreteVariableNode('X', ['same', 'diff'], logarithmetic=False)
        D = DiscreteVariableNode('ZDummy', ['dummy'], logarithmetic=False)
        f = DirichletFactorNode('f')

        X.observed({('same', ): 0.50001, ('diff', ): 0.49999})

        f.connect(theta)
        f.connect(X, parent=False)
        f.connect(D)

        # Add nodes to lbp.
        lbp = LBP(strategy='tree')
        lbp.add_nodes([f, X, D, theta])

        for i in range(50):
            lbp.run()
            #print theta.alpha.pretty_print(precision=5)
            lbp.init_messages()
        print theta.alpha.pretty_print(precision=5)
示例#2
0
文件: test_lbp.py 项目: UFAL-DSG/alex
    def test_ep_tight(self):
        theta = DirichletParameterNode('theta', Factor(
            ['X', 'ZDummy'],
            {
                'X': ['same', 'diff'],
                'ZDummy': ['dummy']
            },
            {
                ('same', 'dummy'): 1,
                ('diff', 'dummy'): 1,
            }, logarithmetic=False))

        X = DiscreteVariableNode('X', ['same', 'diff'], logarithmetic=False)
        D = DiscreteVariableNode('ZDummy', ['dummy'], logarithmetic=False)
        f = DirichletFactorNode('f')

        X.observed({('same',): 0.50001, ('diff',): 0.49999})

        f.connect(theta)
        f.connect(X, parent=False)
        f.connect(D)

        # Add nodes to lbp.
        lbp = LBP(strategy='tree')
        lbp.add_nodes([
            f, X, D, theta
        ])

        for i in range(50):
            lbp.run()
            #print theta.alpha.pretty_print(precision=5)
            lbp.init_messages()
示例#3
0
    def test_dir_tight(self):
        theta = DirichletParameterNode(
            'theta',
            Factor(['X', 'ZDummy'], {
                'X': ['same', 'diff'],
                'ZDummy': ['dummy']
            }, {
                ('same', 'dummy'): 1,
                ('diff', 'dummy'): 1,
            },
                   logarithmetic=False))

        X = DiscreteVariableNode('X', ['same', 'diff'], logarithmetic=False)
        D = DiscreteVariableNode('ZDummy', ['dummy'], logarithmetic=False)
        f = DirichletFactorNode('f')

        X.observed({('same', ): 0.8, ('diff', ): 0.2})

        f.connect(theta)
        f.connect(X, parent=False)
        f.connect(D)

        X.message_to(f)
        D.message_to(f)
        f.update()
        f.message_to(theta)

        theta.message_to(f)

        X.observed({('same', ): 0.5, ('diff', ): 0.7})
        X.message_to(f)
        f.update()
        f.message_to(theta)
示例#4
0
    def test_two_factors_one_theta2(self):
        alpha = DirichletParameterNode(
            'theta',
            Factor(['X0', 'X1'], {
                'X0': ['x0_0', 'x0_1'],
                'X1': ['x1_0', 'x1_1', 'x1_2'],
            }, {
                ('x0_0', 'x1_0'): 1,
                ('x0_0', 'x1_1'): 8,
                ('x0_0', 'x1_2'): 1,
                ('x0_1', 'x1_0'): 1,
                ('x0_1', 'x1_1'): 2,
                ('x0_1', 'x1_2'): 1,
            }))

        f1 = DirichletFactorNode('f1', aliases={'X0': 'X0_a', 'X1': 'X1_a'})
        x0 = DiscreteVariableNode('X0_a', ['x0_0', 'x0_1'])
        x1 = DiscreteVariableNode('X1_a', ['x1_0', 'x1_1', 'x1_2'])

        f2 = DirichletFactorNode('f2', aliases={'X0': 'X0_b', 'X1': 'X1_b'})
        x2 = DiscreteVariableNode('X0_b', ['x0_0', 'x0_1'])
        x3 = DiscreteVariableNode('X1_b', ['x1_0', 'x1_1', 'x1_2'])

        f1.connect(x0, parent=False)
        f1.connect(x1)

        f2.connect(x2, parent=False)
        f2.connect(x3)

        f1.connect(alpha)
        f2.connect(alpha)

        alpha.aliases = {
            'X0_a': 'X0',
            'X0_b': 'X0',
            'X1_a': 'X1',
            'X1_b': 'X1'
        }

        x0.observed({('x0_0', ): 1})
        x1.observed({('x1_0', ): 1})

        x2.observed({('x0_1', ): 1})
        x3.observed({('x1_0', ): 1})

        x0.message_to(f1)
        x1.message_to(f1)
        x2.message_to(f2)
        x3.message_to(f2)

        f1.update()
        f2.update()

        f1.message_to(alpha)
        f2.message_to(alpha)

        self.assertAlmostEqual(alpha.alpha[('x0_0', 'x1_0')], 2, places=5)
        self.assertAlmostEqual(alpha.alpha[('x0_1', 'x1_0')], 2, places=5)
示例#5
0
    def test_parameter(self):
        alpha = DirichletParameterNode(
            'theta',
            Factor(['X0', 'X1'], {
                'X0': ['x0_0', 'x0_1'],
                'X1': ['x1_0', 'x1_1', 'x1_2'],
            }, {
                ('x0_0', 'x1_0'): 1,
                ('x0_0', 'x1_1'): 8,
                ('x0_0', 'x1_2'): 1,
                ('x0_1', 'x1_0'): 1,
                ('x0_1', 'x1_1'): 2,
                ('x0_1', 'x1_2'): 1,
            }))

        factor = DirichletFactorNode('factor')
        x0 = DiscreteVariableNode('X0', ['x0_0', 'x0_1'])
        x1 = DiscreteVariableNode('X1', ['x1_0', 'x1_1', 'x1_2'])

        x0.observed({('x0_0', ): 1})
        x1.observed({('x1_0', ): 0.7, ('x1_1', ): 0.2, ('x1_2', ): 0.1})

        factor.connect(alpha)
        factor.connect(x0, parent=False)
        factor.connect(x1, parent=True)

        x0.message_to(factor)
        x1.message_to(factor)

        factor.update()

        factor.message_to(x0)
        factor.message_to(x1)

        x0.update()

        factor.message_to(alpha)

        alpha.message_to(factor)

        factor.update()
        factor.message_to(alpha)
示例#6
0
    def test_parameter_simple(self):
        alpha = DirichletParameterNode(
            'theta',
            Factor(['X0', 'X1'], {
                'X0': ['x0_0', 'x0_1'],
                'X1': ['x1_0'],
            }, {
                ('x0_0', 'x1_0'): 3,
                ('x0_1', 'x1_0'): 1,
            }))

        factor = DirichletFactorNode('factor')
        x0 = DiscreteVariableNode('X0', ['x0_0', 'x0_1'])
        x1 = DiscreteVariableNode('X1', ['x1_0'])

        x1.observed({('x1_0', ): 1})

        factor.connect(alpha)
        factor.connect(x0, parent=False)
        factor.connect(x1, parent=True)

        x0.message_to(factor)
        x1.message_to(factor)

        factor.update()
        self.assertAlmostEqual(factor.belief[('x0_0', 'x1_0')], 0.5)

        factor.message_to(x0)
        factor.message_to(x1)

        x0.update()
        self.assertAlmostEqual(x0.belief[('x0_0', )], 3.0 / 4)

        factor.message_to(alpha)
示例#7
0
文件: test_node.py 项目: AoJ/alex
    def test_dir_tight(self):
        theta = DirichletParameterNode('theta', Factor(
            ['X', 'ZDummy'],
            {
                'X': ['same', 'diff'],
                'ZDummy': ['dummy']
            },
            {
                ('same', 'dummy'): 1,
                ('diff', 'dummy'): 1,
            },
            logarithmetic=False
        ))

        X = DiscreteVariableNode('X', ['same', 'diff'], logarithmetic=False)
        D = DiscreteVariableNode('ZDummy', ['dummy'], logarithmetic=False)
        f = DirichletFactorNode('f')

        X.observed({('same',): 0.8, ('diff',): 0.2})

        f.connect(theta)
        f.connect(X, parent=False)
        f.connect(D)

        X.message_to(f)
        D.message_to(f)
        f.update()
        f.message_to(theta)
        print theta.alpha

        theta.message_to(f)

        X.observed({('same',): 0.5, ('diff',): 0.7})
        X.message_to(f)
        f.update()
        f.message_to(theta)
        print theta.alpha
示例#8
0
文件: test_node.py 项目: AoJ/alex
    def test_two_factors_one_theta2(self):
        alpha = DirichletParameterNode('theta', Factor(
            ['X0', 'X1'],
            {
                'X0': ['x0_0', 'x0_1'],
                'X1': ['x1_0', 'x1_1', 'x1_2'],
            },
            {
                ('x0_0', 'x1_0'): 1,
                ('x0_0', 'x1_1'): 8,
                ('x0_0', 'x1_2'): 1,
                ('x0_1', 'x1_0'): 1,
                ('x0_1', 'x1_1'): 2,
                ('x0_1', 'x1_2'): 1,
            }
        ))

        f1 = DirichletFactorNode('f1', aliases={'X0': 'X0_a', 'X1': 'X1_a'})
        x0 = DiscreteVariableNode('X0_a', ['x0_0', 'x0_1'])
        x1 = DiscreteVariableNode('X1_a', ['x1_0', 'x1_1', 'x1_2'])

        f2 = DirichletFactorNode('f2', aliases={'X0': 'X0_b', 'X1': 'X1_b'})
        x2 = DiscreteVariableNode('X0_b', ['x0_0', 'x0_1'])
        x3 = DiscreteVariableNode('X1_b', ['x1_0', 'x1_1', 'x1_2'])

        f1.connect(x0, parent=False)
        f1.connect(x1)

        f2.connect(x2, parent=False)
        f2.connect(x3)

        f1.connect(alpha)
        f2.connect(alpha)

        alpha.aliases = {'X0_a': 'X0', 'X0_b': 'X0', 'X1_a': 'X1', 'X1_b': 'X1'}

        x0.observed({('x0_0',): 1})
        x1.observed({('x1_0',): 1})

        x2.observed({('x0_1',): 1})
        x3.observed({('x1_0',): 1})

        x0.message_to(f1)
        x1.message_to(f1)
        x2.message_to(f2)
        x3.message_to(f2)

        f1.update()
        f2.update()

        f1.message_to(alpha)
        f2.message_to(alpha)

        print alpha.alpha
        self.assertAlmostEqual(alpha.alpha[('x0_0', 'x1_0')], 2, places=5)
        self.assertAlmostEqual(alpha.alpha[('x0_1', 'x1_0')], 2, places=5)
示例#9
0
文件: test_node.py 项目: AoJ/alex
    def test_parameter(self):
        alpha = DirichletParameterNode('theta', Factor(
            ['X0', 'X1'],
            {
                'X0': ['x0_0', 'x0_1'],
                'X1': ['x1_0', 'x1_1', 'x1_2'],
            },
            {
                ('x0_0', 'x1_0'): 1,
                ('x0_0', 'x1_1'): 8,
                ('x0_0', 'x1_2'): 1,
                ('x0_1', 'x1_0'): 1,
                ('x0_1', 'x1_1'): 2,
                ('x0_1', 'x1_2'): 1,
            }
        ))

        factor = DirichletFactorNode('factor')
        x0 = DiscreteVariableNode('X0', ['x0_0', 'x0_1'])
        x1 = DiscreteVariableNode('X1', ['x1_0', 'x1_1', 'x1_2'])

        x0.observed({('x0_0',): 1})
        x1.observed({('x1_0',): 0.7, ('x1_1',): 0.2, ('x1_2',): 0.1})

        factor.connect(alpha)
        factor.connect(x0, parent=False)
        factor.connect(x1, parent=True)

        x0.message_to(factor)
        x1.message_to(factor)

        factor.update()

        factor.message_to(x0)
        factor.message_to(x1)

        x0.update()

        factor.message_to(alpha)
        print alpha.alpha

        alpha.message_to(factor)

        factor.update()
        factor.message_to(alpha)
        print alpha.alpha
示例#10
0
文件: test_node.py 项目: AoJ/alex
    def test_parameter_simple(self):
        alpha = DirichletParameterNode('theta', Factor(
            ['X0', 'X1'],
            {
                'X0': ['x0_0', 'x0_1'],
                'X1': ['x1_0'],
            },
            {
                ('x0_0', 'x1_0'): 3,
                ('x0_1', 'x1_0'): 1,
            }
        ))

        factor = DirichletFactorNode('factor')
        x0 = DiscreteVariableNode('X0', ['x0_0', 'x0_1'])
        x1 = DiscreteVariableNode('X1', ['x1_0'])

        x1.observed({('x1_0',): 1})

        factor.connect(alpha)
        factor.connect(x0, parent=False)
        factor.connect(x1, parent=True)

        x0.message_to(factor)
        x1.message_to(factor)

        factor.update()
        self.assertAlmostEqual(factor.belief[('x0_0', 'x1_0')], 0.5)

        factor.message_to(x0)
        factor.message_to(x1)

        x0.update()
        self.assertAlmostEqual(x0.belief[('x0_0',)], 3.0/4)

        factor.message_to(alpha)
        print alpha.alpha
示例#11
0
文件: test_lbp.py 项目: UFAL-DSG/alex
    def test_ep(self):
        # Create nodes.
        hid1 = DiscreteVariableNode("hid1", ["save", "del"])
        obs1 = DiscreteVariableNode("obs1", ["osave", "odel"])
        fact_h1_o1 = DirichletFactorNode("fact_h1_o1")
        theta_h1_o1 = DirichletParameterNode('theta_h1_o1', Factor(
            ['hid1', 'obs1'],
            {
                "hid1": ["save", "del"],
                "obs1": ["osave", "odel"]
            },
            {
                ("save", "osave"): 1,
                ("save", "odel"): 1,
                ("del", "osave"): 1,
                ("del", "odel"): 1,
            }))

        hid2 = DiscreteVariableNode("hid2", ["save", "del"])
        obs2 = DiscreteVariableNode("obs2", ["osave", "odel"])
        fact_h2_o2 = DirichletFactorNode("fact_h2_o2")
        theta_h2_o2 = DirichletParameterNode('theta_h2_o2', Factor(
            ['hid2', 'obs2'],
            {
                "hid2": ["save", "del"],
                "obs2": ["osave", "odel"]
            },
            {
                ("save", "osave"): 1,
                ("save", "odel"): 1,
                ("del", "osave"): 1,
                ("del", "odel"): 1,
            }))

        fact_h1_h2 = DiscreteFactorNode("fact_h1_h2", Factor(
            ['hid1', 'hid2'],
            {
                "hid1": ["save", "del"],
                "hid2": ["save", "del"],
            },
            {
                ("save", "save"): 0.9,
                ("save", "del"): 0.1,
                ("del", "save"): 0,
                ("del", "del"): 1
            }))

        # Connect nodes.
        obs1.connect(fact_h1_o1, parent=False)
        fact_h1_o1.connect(hid1)
        fact_h1_o1.connect(theta_h1_o1)

        obs2.connect(fact_h2_o2, parent=False)
        fact_h2_o2.connect(hid2)
        fact_h2_o2.connect(theta_h2_o2)

        hid1.connect(fact_h1_h2)
        hid2.connect(fact_h1_h2)

        # Add nodes to lbp.
        lbp = LBP(strategy='tree')
        lbp.add_nodes([
            obs1, obs2,
            fact_h1_o1, fact_h2_o2,
            theta_h1_o1, theta_h2_o2,
            hid1, hid2,
            fact_h1_h2
        ])

        obs1.observed({('osave',): 1})
        obs2.observed({('osave',): 1})
        hid1.observed({('save',): 1})
        hid2.observed({('save',): 1})

        for i in range(100):
            lbp.run()
            #print theta_h1_o1.alpha.pretty_print(precision=5)
            lbp.init_messages()
示例#12
0
    def test_ep(self):
        # Create nodes.
        hid1 = DiscreteVariableNode("hid1", ["save", "del"])
        obs1 = DiscreteVariableNode("obs1", ["osave", "odel"])
        fact_h1_o1 = DirichletFactorNode("fact_h1_o1")
        theta_h1_o1 = DirichletParameterNode(
            'theta_h1_o1',
            Factor(['hid1', 'obs1'], {
                "hid1": ["save", "del"],
                "obs1": ["osave", "odel"]
            }, {
                ("save", "osave"): 1,
                ("save", "odel"): 1,
                ("del", "osave"): 1,
                ("del", "odel"): 1,
            }))

        hid2 = DiscreteVariableNode("hid2", ["save", "del"])
        obs2 = DiscreteVariableNode("obs2", ["osave", "odel"])
        fact_h2_o2 = DirichletFactorNode("fact_h2_o2")
        theta_h2_o2 = DirichletParameterNode(
            'theta_h2_o2',
            Factor(['hid2', 'obs2'], {
                "hid2": ["save", "del"],
                "obs2": ["osave", "odel"]
            }, {
                ("save", "osave"): 1,
                ("save", "odel"): 1,
                ("del", "osave"): 1,
                ("del", "odel"): 1,
            }))

        fact_h1_h2 = DiscreteFactorNode(
            "fact_h1_h2",
            Factor(['hid1', 'hid2'], {
                "hid1": ["save", "del"],
                "hid2": ["save", "del"],
            }, {
                ("save", "save"): 0.9,
                ("save", "del"): 0.1,
                ("del", "save"): 0,
                ("del", "del"): 1
            }))

        # Connect nodes.
        obs1.connect(fact_h1_o1, parent=False)
        fact_h1_o1.connect(hid1)
        fact_h1_o1.connect(theta_h1_o1)

        obs2.connect(fact_h2_o2, parent=False)
        fact_h2_o2.connect(hid2)
        fact_h2_o2.connect(theta_h2_o2)

        hid1.connect(fact_h1_h2)
        hid2.connect(fact_h1_h2)

        # Add nodes to lbp.
        lbp = LBP(strategy='tree')
        lbp.add_nodes([
            obs1, obs2, fact_h1_o1, fact_h2_o2, theta_h1_o1, theta_h2_o2, hid1,
            hid2, fact_h1_h2
        ])

        obs1.observed({('osave', ): 1})
        obs2.observed({('osave', ): 1})
        hid1.observed({('save', ): 1})
        hid2.observed({('save', ): 1})

        for i in range(100):
            lbp.run()
            print theta_h1_o1.alpha.pretty_print(precision=5)
            lbp.init_messages()