示例#1
0
                 uEqualsL=True,
                 gradCut=gradCut,
                 verbose=False,
                 bigell=lmax)

clkk2d = theory.gCl('kk', modlmap_dat)

for k, index in enumerate(my_tasks):
    if rank == 0:
        print(
            ("Rank ", rank, " doing job ", k + 1, " / ", len(my_tasks), "..."))
    unlensed = parray_sim.get_unlensed_cmb(seed=index, scalar=False)
    luteb, dummy = sverif_cmb.add_power("unlensed", unlensed)

    kappa = parray_sim.get_kappa(ktype="grf", vary=False, seed=index + 1000000)
    phi, fphi = lt.kappa_to_phi(kappa, parray_sim.modlmap, return_fphi=True)
    grad_phi = enmap.grad(phi)
    lensed = lensing.lens_map(unlensed.copy(), grad_phi, order=lens_order)
    llteb, dummy = sverif_cmb.add_power("lensed", lensed)

    pdelensed = lensing.delens_map(lensed,
                                   grad_phi,
                                   nstep=delens_steps,
                                   order=lens_order)
    lpteb, dummy = sverif_cmb.add_power("pdelensed", pdelensed)

    qest.updateTEB_X(llteb[0], llteb[1], llteb[2], alreadyFTed=True)
    qest.updateTEB_Y(alreadyFTed=True)
    with io.nostdout():
        rawkappa_TT = qest.getKappa("TT").real
        rawkappa_EB = qest.getKappa("EB").real
示例#2
0
    grad_cut = None

    clkk = theory.gCl("kk", fine_ells)
    clkk.resize((1, 1, clkk.size))
    kappa_map = enmap.rand_map(shape_sim[-2:], wcs_sim, cov=clkk, scalar=True)

    pkk = fmaps.get_simple_power_enmap(kappa_map)
    debug_edges = np.arange(2, 12000, 80)
    dbinner = stats.bin2D(modlmap_sim, debug_edges)
    cents, bclkk = dbinner.bin(pkk)
    clkk.resize((clkk.shape[-1]))
    pl = io.Plotter(scaleY='log', scaleX='log')
    pl.add(fine_ells, clkk)
    pl.add(cents, bclkk)
    pl.done(out_dir + "clkk.png")
phi, fphi = lt.kappa_to_phi(kappa_map, modlmap_sim, return_fphi=True)
io.quickPlot2d(kappa_map, out_dir + "kappa_map.png")
io.quickPlot2d(phi, out_dir + "phi.png")
alpha_pix = enmap.grad_pixf(fphi)

# === SIM AND RECON LOOP ===

kappa_stack = {}
if cluster:
    profiles = {}
else:
    apowers = {}
    cpowers = {}
for polcomb in pol_list:
    kappa_stack[polcomb] = 0.
    if cluster:
示例#3
0
    model_uniform_kappa = 0.02  #02
else:
    clkk = theory.gCl("kk", fine_ells)
    clkk.resize((1, 1, clkk.size))
    kappa_map = enmap.rand_map(shape_sim[-2:], wcs_sim, cov=clkk, scalar=True)
    if debug:
        pkk = fmaps.get_simple_power_enmap(kappa_map)
        debug_edges = np.arange(kellmin, 8000, 80)
        dbinner = stats.bin2D(modlmap_sim, debug_edges)
        cents, bclkk = dbinner.bin(pkk)
        clkk.resize((clkk.shape[-1]))
        pl = io.Plotter(scaleY='log', scaleX='log')
        pl.add(fine_ells, clkk)
        pl.add(cents, bclkk)
        pl.done(out_dir + "clkk.png")
phi, fphi = lt.kappa_to_phi(kappa_map, modlmap_sim, return_fphi=True)
io.quickPlot2d(kappa_map, out_dir + "kappa_map.png")
io.quickPlot2d(phi, out_dir + "phi.png")
alpha_pix = enmap.grad_pixf(fphi)

# === EXPERIMENT ===

if deconvolve_beam:
    ntfunc = cmb.get_noise_func(beam_arcmin,
                                noise_T_uK_arcmin,
                                ellmin=tellmin,
                                ellmax=tellmax,
                                TCMB=TCMB)
    npfunc = cmb.get_noise_func(beam_arcmin,
                                noise_P_uK_arcmin,
                                ellmin=pellmin,
示例#4
0

noise_T = 1.0
    
pa = fmaps.PatchArray(shape,wcs,dimensionless=False,skip_real=False)
pa.add_theory(cc,theory,lmax)
pa.add_gaussian_beam(1.0)
pa.add_white_noise_with_atm(noise_T,0.,0,1,0,1)

Npoints = 60
mrange = np.linspace(1,3,Npoints)*1.e14


trueM = 2e14
kappa = nfwkappa(trueM)
phi, fphi = lt.kappa_to_phi(kappa,pa.modlmap,return_fphi=True)
#grad_phi = enmap.grad(phi)
alpha_pix = enmap.grad_pixf(fphi)

N = 10000
Nfor = N

totlikes = 0.
allike = 1.

Ms = []
logdets = []
cinvs = []

TCMB = 1. #2.7255e6
from scipy.linalg import pinv2
                 fmaskY2dTEB=[fMaskCMB_T, fMaskCMB_P, fMaskCMB_P],
                 fmaskKappa=fMask,
                 kBeamX=kbeampass,
                 kBeamY=kbeampass,
                 doCurl=False,
                 TOnly=not (pol),
                 halo=True,
                 uEqualsL=False,
                 gradCut=gradCut,
                 verbose=False,
                 bigell=lmax,
                 lEqualsU=False)

kappa = get_nfw(5.e14)
#+  parray_sim.get_grf_kappa(seed=10,skip_update=False)
phi, fphi = lt.kappa_to_phi(kappa, parray_sim.modlmap, return_fphi=True)
grad_phi = enmap.grad(phi)

kappa_model = kappa.copy() / 5.
#kappa_model = kappa.copy()# /5.

for k, index in enumerate(my_tasks):
    if rank == 0:
        print(
            ("Rank ", rank, " doing job ", k + 1, " / ", len(my_tasks), "..."))
    unlensed = parray_sim.get_unlensed_cmb(seed=index, scalar=False)
    luteb, dummy = sverif_cmb.add_power("unlensed", unlensed)

    lensed = lensing.lens_map(unlensed.copy(), grad_phi, order=lens_order)
    lensed += parray_dat.get_noise_sim(seed=index + 100000)
    llteb, dummy = sverif_cmb.add_power("lensed", lensed)
示例#6
0
    

pixratio = analysis_resolution/Config.getfloat(sim_section,"pixel_arcmin")
px_dat = analysis_resolution
lens_order = Config.getint(sim_section,"lens_order")

k = -1
for index in my_tasks:
    
    k += 1
    if k==0:

        from alhazen.halos import nfw_kappa
        kappa = nfw_kappa(cluster_mass,parray_sim.modrmap,cc)
        #kappa = parray_sim.get_grf_kappa(seed=1)
        phi, fphi = lt.kappa_to_phi(kappa,parray_sim.modlmap,return_fphi=True)
        grad_phi = enmap.grad(phi)
            

    if rank==0: print(("Generating unlensed CMB for ", k, "..."))
    unlensed = parray_sim.get_unlensed_cmb(seed=index)
    if rank==0: print("Lensing...")
    lensed = unlensed if nolens else lensing.lens_map(unlensed.copy(), grad_phi, order=lens_order, mode="spline", border="cyclic", trans=False, deriv=False, h=1e-7)
    #lensed = lensing.lens_map_flat(unlensed.copy(), phi, order=lens_order)
    if rank==0: print("Downsampling...")
    cmb = lensed if abs(pixratio-1.)<1.e-3 else resample.resample_fft(lensed,shape_dat)
    cmb = enmap.ndmap(cmb,wcs_dat)
    if rank==0: print("Adding noise...")
    flensed = fftfast.fft(cmb,axes=[-2,-1])
    flensed *= parray_dat.lbeam
    lensedt = fftfast.ifft(flensed,axes=[-2,-1],normalize=True).real