def sick_corpus(sick_dict, basic_dir, generated_dir):
    output_directory = os.path.join(generated_dir, 'sickcorpus')
    corpus = Corpus(basic_dir, output_directory, num_jobs = 2)
    corpus.write()
    corpus.create_mfccs()
    corpus.setup_splits(sick_dict)
    return corpus
def sick_corpus(sick_dict, basic_dir, generated_dir):
    output_directory = os.path.join(generated_dir, 'sickcorpus')
    corpus = Corpus(basic_dir, output_directory, num_jobs=2)
    corpus.write()
    corpus.create_mfccs()
    corpus.setup_splits(sick_dict)
    return corpus
示例#3
0
def test_stereo(basic_dict_path, textgrid_directory, generated_dir):
    temp = os.path.join(generated_dir, 'stereo')
    dictionary = Dictionary(basic_dict_path, os.path.join(temp, 'basic'))
    dictionary.write()
    d = Corpus(os.path.join(textgrid_directory, 'stereo'), temp)
    d.write()
    d.create_mfccs()
    d.setup_splits(dictionary)
    assert (d.get_feat_dim() == '39')
def test_basic(basic_dict_path, basic_dir, generated_dir):
    dictionary = Dictionary(basic_dict_path, os.path.join(generated_dir, "basic"))
    dictionary.write()
    output_directory = os.path.join(generated_dir, "basic")
    d = Corpus(basic_dir, output_directory)
    d.write()
    d.create_mfccs()
    d.setup_splits(dictionary)
    assert d.get_feat_dim() == "39"
def test_stereo(basic_dict_path, textgrid_directory, generated_dir):
    temp = os.path.join(generated_dir, "stereo")
    dictionary = Dictionary(basic_dict_path, os.path.join(temp, "basic"))
    dictionary.write()
    d = Corpus(os.path.join(textgrid_directory, "stereo"), temp)
    d.write()
    d.create_mfccs()
    d.setup_splits(dictionary)
    assert d.get_feat_dim() == "39"
示例#6
0
def test_basic(basic_dict_path, basic_dir, generated_dir):
    dictionary = Dictionary(basic_dict_path,
                            os.path.join(generated_dir, 'basic'))
    dictionary.write()
    output_directory = os.path.join(generated_dir, 'basic')
    d = Corpus(basic_dir, output_directory)
    d.write()
    d.create_mfccs()
    d.setup_splits(dictionary)
    assert (d.get_feat_dim() == '39')
示例#7
0
def test_acoustic(basic_dir, generated_dir):
    output_directory = os.path.join(generated_dir, 'acoustic')
    d = Corpus(basic_dir, output_directory)
    d.write()
    d.create_mfccs()
    n = no_dictionary(d, output_directory)
    d.setup_splits(n)
    assert n.words['should'] == [['s', 'h', 'o', 'u', 'l', 'd']]
    assert '<vocnoise>' not in n.words
    assert n.words['here\'s'] == [['h', 'e', 'r', 'e', 's']]
示例#8
0
def test_vietnamese(textgrid_directory, generated_dir):
    output_directory = os.path.join(generated_dir, 'vietnamese')
    d = Corpus(os.path.join(textgrid_directory, 'vietnamese'), output_directory)
    d.write()
    d.create_mfccs()
    n = no_dictionary(d, output_directory)
    d.setup_splits(n)
    assert n.words['chăn'] == [['c', 'h', 'ă', 'n']]
    assert '<vocnoise>' not in n.words
    assert n.words['tập'] == [['t','ậ','p']]
def align_corpus(corpus_dir, dict_path, output_directory, temp_dir,
                 output_model_path, args):
    if temp_dir == '':
        temp_dir = TEMP_DIR
    else:
        temp_dir = os.path.expanduser(temp_dir)
    corpus_name = os.path.basename(corpus_dir)
    if corpus_name == '':
        corpus_dir = os.path.dirname(corpus_dir)
        corpus_name = os.path.basename(corpus_dir)
    data_directory = os.path.join(temp_dir, corpus_name)
    if args.clean:
        shutil.rmtree(data_directory, ignore_errors=True)
        shutil.rmtree(output_directory, ignore_errors=True)

    os.makedirs(data_directory, exist_ok=True)
    os.makedirs(output_directory, exist_ok=True)

    dictionary = Dictionary(dict_path, data_directory)
    dictionary.write()
    corpus = Corpus(corpus_dir,
                    data_directory,
                    args.speaker_characters,
                    num_jobs=args.num_jobs)
    print(corpus.speaker_utterance_info())
    corpus.write()
    corpus.create_mfccs()
    corpus.setup_splits(dictionary)
    utt_oov_path = os.path.join(corpus.split_directory, 'utterance_oovs.txt')
    if os.path.exists(utt_oov_path):
        shutil.copy(utt_oov_path, output_directory)
    oov_path = os.path.join(corpus.split_directory, 'oovs_found.txt')
    if os.path.exists(oov_path):
        shutil.copy(oov_path, output_directory)
    mono_params = {'align_often': not args.fast}
    tri_params = {'align_often': not args.fast}
    tri_fmllr_params = {'align_often': not args.fast}
    a = TrainableAligner(corpus,
                         dictionary,
                         output_directory,
                         temp_directory=data_directory,
                         mono_params=mono_params,
                         tri_params=tri_params,
                         tri_fmllr_params=tri_fmllr_params,
                         num_jobs=args.num_jobs)
    a.verbose = args.verbose
    a.train_mono()
    a.export_textgrids()
    a.train_tri()
    a.export_textgrids()
    a.train_tri_fmllr()
    a.export_textgrids()
    if output_model_path is not None:
        a.save(output_model_path)
def align_corpus(model_path, corpus_dir,  output_directory, temp_dir, args, debug = False):
    all_begin = time.time()
    if temp_dir == '':
        temp_dir = TEMP_DIR
    else:
        temp_dir = os.path.expanduser(temp_dir)
    corpus_name = os.path.basename(corpus_dir)
    if corpus_name == '':
        corpus_dir = os.path.dirname(corpus_dir)
        corpus_name = os.path.basename(corpus_dir)
    data_directory = os.path.join(temp_dir, corpus_name)
    if args.clean:
        shutil.rmtree(data_directory, ignore_errors = True)
        shutil.rmtree(output_directory, ignore_errors = True)

    os.makedirs(data_directory, exist_ok = True)
    os.makedirs(output_directory, exist_ok = True)
    begin = time.time()
    corpus = Corpus(corpus_dir, data_directory, args.speaker_characters, num_jobs = args.num_jobs)
    print(corpus.speaker_utterance_info())
    corpus.write()
    if debug:
        print('Wrote corpus information in {} seconds'.format(time.time() - begin))
    begin = time.time()
    corpus.create_mfccs()
    if debug:
        print('Calculated mfccs in {} seconds'.format(time.time() - begin))
    archive = Archive(model_path)
    begin = time.time()
    a = PretrainedAligner(archive, corpus, output_directory,
                        temp_directory = data_directory, num_jobs = args.num_jobs, speaker_independent = args.no_speaker_adaptation)
    if debug:
        print('Setup pretrained aligner in {} seconds'.format(time.time() - begin))
    a.verbose = args.verbose
    begin = time.time()
    corpus.setup_splits(a.dictionary)
    if debug:
        print('Setup splits in {} seconds'.format(time.time() - begin))
    utt_oov_path = os.path.join(corpus.split_directory, 'utterance_oovs.txt')
    if os.path.exists(utt_oov_path):
        shutil.copy(utt_oov_path, output_directory)
    oov_path = os.path.join(corpus.split_directory, 'oovs_found.txt')
    if os.path.exists(oov_path):
        shutil.copy(oov_path, output_directory)
    begin = time.time()
    a.do_align()
    if debug:
        print('Performed alignment in {} seconds'.format(time.time() - begin))
    begin = time.time()
    a.export_textgrids()
    if debug:
        print('Exported textgrids in {} seconds'.format(time.time() - begin))
    print('Done! Everything took {} seconds'.format(time.time() - all_begin))
def align_corpus(corpus_dir, dict_path,  output_directory, temp_dir,
            output_model_path, args):
    if temp_dir == '':
        temp_dir = TEMP_DIR
    else:
        temp_dir = os.path.expanduser(temp_dir)
    corpus_name = os.path.basename(corpus_dir)
    if corpus_name == '':
        corpus_dir = os.path.dirname(corpus_dir)
        corpus_name = os.path.basename(corpus_dir)
    data_directory = os.path.join(temp_dir, corpus_name)
    if args.clean:
        shutil.rmtree(data_directory, ignore_errors = True)
        shutil.rmtree(output_directory, ignore_errors = True)

    os.makedirs(data_directory, exist_ok = True)
    os.makedirs(output_directory, exist_ok = True)

    corpus = Corpus(corpus_dir, data_directory, args.speaker_characters, num_jobs = args.num_jobs)
    print(corpus.speaker_utterance_info())
    corpus.write()
    corpus.create_mfccs()
    dictionary = Dictionary(dict_path, data_directory, word_set=corpus.word_set)
    dictionary.write()
    corpus.setup_splits(dictionary)
    utt_oov_path = os.path.join(corpus.split_directory, 'utterance_oovs.txt')
    if os.path.exists(utt_oov_path):
        shutil.copy(utt_oov_path, output_directory)
    oov_path = os.path.join(corpus.split_directory, 'oovs_found.txt')
    if os.path.exists(oov_path):
        shutil.copy(oov_path, output_directory)
    mono_params = {'align_often': not args.fast}
    tri_params = {'align_often': not args.fast}
    tri_fmllr_params = {'align_often': not args.fast}
    a = TrainableAligner(corpus, dictionary, output_directory,
                        temp_directory = data_directory,
                        mono_params = mono_params, tri_params = tri_params,
                        tri_fmllr_params = tri_fmllr_params, num_jobs = args.num_jobs)
    a.verbose = args.verbose
    a.train_mono()
    a.export_textgrids()
    a.train_tri()
    a.export_textgrids()
    a.train_tri_fmllr()
    a.export_textgrids()
    if output_model_path is not None:
        a.save(output_model_path)
def test_extra(sick_dict, extra_dir, generated_dir):
    output_directory = os.path.join(generated_dir, "extra")
    corpus = Corpus(extra_dir, output_directory, num_jobs=2)
    corpus.write()
    corpus.create_mfccs()
    corpus.setup_splits(sick_dict)