def test_step(self):
     num_envs = 5
     env = DuplicateEnvironment(make_vec_env(num_envs))
     env.reset()
     state = env.step(torch.ones(num_envs, dtype=torch.int32))
     self.assertEqual(state.observation.shape, (num_envs, 4))
     self.assertTrue((state.reward == torch.ones(num_envs, )).all())
     self.assertTrue((state.done == torch.zeros(num_envs, )).all())
     self.assertTrue((state.mask == torch.ones(num_envs, )).all())
 def test_step_until_done(self):
     num_envs = 3
     env = DuplicateEnvironment(make_vec_env(num_envs))
     env.seed(5)
     env.reset()
     for _ in range(100):
         state = env.step(torch.ones(num_envs, dtype=torch.int32))
         if state.done[0]:
             break
     self.assertEqual(state[0].observation.shape, (4, ))
     self.assertEqual(state[0].reward, 1.)
     self.assertTrue(state[0].done)
     self.assertEqual(state[0].mask, 0)
 def test_same_as_duplicate(self):
     n_envs = 3
     torch.manual_seed(42)
     env1 = DuplicateEnvironment([GymEnvironment('CartPole-v0') for i in range(n_envs)])
     env2 = GymVectorEnvironment(make_vec_env(n_envs), "CartPole-v0")
     env1.seed(42)
     env2.seed(42)
     state1 = env1.reset()
     state2 = env2.reset()
     self.assertEqual(env1.name, env2.name)
     self.assertEqual(env1.action_space.n, env2.action_space.n)
     self.assertEqual(env1.observation_space.shape, env2.observation_space.shape)
     self.assertEqual(env1.num_envs, 3)
     self.assertEqual(env2.num_envs, 3)
     act_space = env1.action_space
     for i in range(2):
         self.assertTrue(torch.all(torch.eq(state1.observation, state2.observation)))
         self.assertTrue(torch.all(torch.eq(state1.reward, state2.reward)))
         self.assertTrue(torch.all(torch.eq(state1.done, state2.done)))
         self.assertTrue(torch.all(torch.eq(state1.mask, state2.mask)))
         actions = torch.tensor([act_space.sample() for i in range(n_envs)])
         state1 = env1.step(actions)
         state2 = env2.step(actions)