def from_params(cls, vocab: Vocabulary, params: Params) -> 'DecomposableAttention': embedder_params = params.pop("text_field_embedder") text_field_embedder = TextFieldEmbedder.from_params(vocab, embedder_params) premise_encoder_params = params.pop("premise_encoder", None) if premise_encoder_params is not None: premise_encoder = Seq2SeqEncoder.from_params(premise_encoder_params) else: premise_encoder = None hypothesis_encoder_params = params.pop("hypothesis_encoder", None) if hypothesis_encoder_params is not None: hypothesis_encoder = Seq2SeqEncoder.from_params(hypothesis_encoder_params) else: hypothesis_encoder = None attend_feedforward = FeedForward.from_params(params.pop('attend_feedforward')) similarity_function = SimilarityFunction.from_params(params.pop("similarity_function")) compare_feedforward = FeedForward.from_params(params.pop('compare_feedforward')) aggregate_feedforward = FeedForward.from_params(params.pop('aggregate_feedforward')) initializer = InitializerApplicator.from_params(params.pop("initializer", [])) return cls(vocab=vocab, text_field_embedder=text_field_embedder, attend_feedforward=attend_feedforward, similarity_function=similarity_function, compare_feedforward=compare_feedforward, aggregate_feedforward=aggregate_feedforward, initializer=initializer, premise_encoder=premise_encoder, hypothesis_encoder=hypothesis_encoder)
def from_params(cls, vocab: Vocabulary, params: Params) -> 'SemanticRoleLabeler': embedder_params = params.pop("text_field_embedder") text_field_embedder = TextFieldEmbedder.from_params(vocab, embedder_params) stacked_encoder = Seq2SeqEncoder.from_params(params.pop("stacked_encoder")) binary_feature_dim = params.pop("binary_feature_dim") initializer = InitializerApplicator.from_params(params.pop("initializer", [])) return cls(vocab=vocab, text_field_embedder=text_field_embedder, stacked_encoder=stacked_encoder, binary_feature_dim=binary_feature_dim, initializer=initializer)
def from_params(cls, vocab: Vocabulary, params: Params) -> 'SemanticRoleLabeler': """ With an empty ``params`` argument, this will instantiate a SRL model with the same configuration as published in the "Deep Semantic Role Labeling - What works and what's next" paper, as long as you've set ``allennlp.common.constants.GLOVE_PATH`` to the location of your gzipped 100-dimensional glove vectors. If you want to change parameters, the keys in the ``params`` object must match the constructor arguments above. """ default_embedder_params = { 'tokens': { 'type': 'embedding', 'pretrained_file': GLOVE_PATH, 'trainable': True } } embedder_params = params.pop("text_field_embedder", default_embedder_params) text_field_embedder = TextFieldEmbedder.from_params( vocab, embedder_params) default_lstm_params = { 'type': 'alternating_lstm', 'input_size': 101, # Because of the verb_indicator feature. 'hidden_size': 300, 'num_layers': 8, 'recurrent_dropout_probability': 0.1, 'use_highway': True } encoder_params = params.pop("stacked_encoder", default_lstm_params) stacked_encoder = Seq2SeqEncoder.from_params(encoder_params) default_initializer_params = { 'bias': { 'type': 'normal', 'std': 0.1 }, 'default': 'orthogonal' } initializer_params = params.pop('initializer', default_initializer_params) initializer = InitializerApplicator.from_params(initializer_params) return cls(vocab=vocab, text_field_embedder=text_field_embedder, stacked_encoder=stacked_encoder, initializer=initializer)
def from_params(cls, vocab: Vocabulary, params: Params) -> 'SentenceClassifier': embedder_params = params.pop("text_field_embedder") text_field_embedder = TextFieldEmbedder.from_params(vocab, embedder_params) question_encoder = Seq2VecEncoder.from_params(params.pop("question_encoder")) initializer = InitializerApplicator.from_params(params.pop('initializer', [])) regularizer = RegularizerApplicator.from_params(params.pop('regularizer', [])) return cls(vocab=vocab, text_field_embedder=text_field_embedder, question_encoder=question_encoder, initializer=initializer, regularizer=regularizer)
def from_params(cls, vocab: Vocabulary, params: Params) -> 'ToxicModel': embedder_params = params.pop("text_field_embedder") text_field_embedder = TextFieldEmbedder.from_params(vocab, embedder_params) encoder = Seq2VecEncoder.from_params(params.pop("encoder")) classifier_feedforward = FeedForward.from_params(params.pop("classifier_feedforward")) initializer = InitializerApplicator.from_params(params.pop('initializer', [])) regularizer = RegularizerApplicator.from_params(params.pop('regularizer', [])) return cls(vocab=vocab, text_field_embedder=text_field_embedder, encoder=encoder, classifier_feedforward=classifier_feedforward, initializer=initializer, regularizer=regularizer)
def from_params(cls, vocab: Vocabulary, params: Params) -> 'DecAccSRL': embedder_params = params.pop("text_field_embedder") text_field_embedder = TextFieldEmbedder.from_params(vocab, embedder_params) premise_encoder_params = params.pop("premise_encoder", None) if premise_encoder_params is not None: premise_encoder = Seq2SeqEncoder.from_params(premise_encoder_params) else: premise_encoder = None hypothesis_encoder_params = params.pop("hypothesis_encoder", None) if hypothesis_encoder_params is not None: hypothesis_encoder = Seq2SeqEncoder.from_params(hypothesis_encoder_params) else: hypothesis_encoder = None srl_model_archive = params.pop('srl_model_archive', None) if srl_model_archive is not None: logger.info("Loaded pretrained SRL model from {}".format(srl_model_archive)) archive = load_archive(srl_model_archive) srl_model = archive.model else: srl_model = None attend_feedforward = FeedForward.from_params(params.pop('attend_feedforward')) similarity_function = SimilarityFunction.from_params(params.pop("similarity_function")) compare_feedforward = FeedForward.from_params(params.pop('compare_feedforward')) aggregate_feedforward = FeedForward.from_params(params.pop('aggregate_feedforward')) initializer = InitializerApplicator.from_params(params.pop("initializer", [])) return cls(vocab=vocab, text_field_embedder=text_field_embedder, attend_feedforward=attend_feedforward, similarity_function=similarity_function, compare_feedforward=compare_feedforward, aggregate_feedforward=aggregate_feedforward, initializer=initializer, srl_model=srl_model, premise_encoder=premise_encoder, hypothesis_encoder=hypothesis_encoder)
def from_params(cls, vocab: Vocabulary, params: Params) -> 'SentenceRepresentationModel': embedder_params = params.pop("text_field_embedder") text_field_embedder = TextFieldEmbedder.from_params( vocab, embedder_params) sentence_encoder_params = params.pop("sentence_encoder", None) if sentence_encoder_params is not None: sentence_encoder = Seq2SeqEncoder.from_params( sentence_encoder_params) else: sentence_encoder = None #hypothesis_encoder_params = params.pop("hypothesis_encoder", None) #if hypothesis_encoder_params is not None: # hypothesis_encoder = Seq2SeqEncoder.from_params(hypothesis_encoder_params) #else: # hypothesis_encoder = None #srl_model_archive = params.pop('srl_model_archive', None) #if srl_model_archive is not None: # logger.info("Loaded pretrained SRL model from {}".format(srl_model_archive)) # archive = load_archive(srl_model_archive) # srl_model = archive.model #else: srl_model = None aggregate_feedforward = FeedForward.from_params( params.pop('aggregate_feedforward')) initializer = InitializerApplicator.from_params( params.pop("initializer", [])) return cls(vocab=vocab, text_field_embedder=text_field_embedder, aggregate_feedforward=aggregate_feedforward, initializer=initializer, srl_model=srl_model, sentence_encoder=sentence_encoder)