示例#1
0
 def __init__(self,
              vocab: Vocabulary,
              sentence_embedder: TextFieldEmbedder,
              action_embedding_dim: int,
              encoder: Seq2SeqEncoder,
              attention: Attention,
              decoder_beam_search: BeamSearch,
              max_decoding_steps: int,
              dropout: float = 0.0) -> None:
     super(NlvrDirectSemanticParser,
           self).__init__(vocab=vocab,
                          sentence_embedder=sentence_embedder,
                          action_embedding_dim=action_embedding_dim,
                          encoder=encoder,
                          dropout=dropout)
     self._decoder_trainer = MaximumMarginalLikelihood()
     self._decoder_step = BasicTransitionFunction(
         encoder_output_dim=self._encoder.get_output_dim(),
         action_embedding_dim=action_embedding_dim,
         input_attention=attention,
         activation=Activation.by_name('tanh')(),
         add_action_bias=False,
         dropout=dropout)
     self._decoder_beam_search = decoder_beam_search
     self._max_decoding_steps = max_decoding_steps
     self._action_padding_index = -1
示例#2
0
    def __init__(self,
                 vocab: Vocabulary,
                 utterance_embedder: TextFieldEmbedder,
                 action_embedding_dim: int,
                 encoder: Seq2SeqEncoder,
                 decoder_beam_search: BeamSearch,
                 max_decoding_steps: int,
                 input_attention: Attention,
                 database_file: str,
                 add_action_bias: bool = True,
                 dropout: float = 0.0,
                 initializer: InitializerApplicator = InitializerApplicator(),
                 regularizer: Optional[RegularizerApplicator] = None) -> None:
        super().__init__(vocab, regularizer)

        self._utterance_embedder = utterance_embedder
        self._encoder = encoder
        self._max_decoding_steps = max_decoding_steps
        self._add_action_bias = add_action_bias
        self._dropout = torch.nn.Dropout(p=dropout)

        self._exact_match = Average()
        self._valid_sql_query = Average()
        self._action_similarity = Average()
        self._denotation_accuracy = Average()

        self._executor = SqlExecutor(database_file)
        # the padding value used by IndexField
        self._action_padding_index = -1
        num_actions = vocab.get_vocab_size("rule_labels")
        input_action_dim = action_embedding_dim
        if self._add_action_bias:
            input_action_dim += 1
        self._action_embedder = Embedding(num_embeddings=num_actions,
                                          embedding_dim=input_action_dim)
        self._output_action_embedder = Embedding(
            num_embeddings=num_actions, embedding_dim=action_embedding_dim)

        # This is what we pass as input in the first step of decoding, when we don't have a
        # previous action, or a previous utterance attention.
        self._first_action_embedding = torch.nn.Parameter(
            torch.FloatTensor(action_embedding_dim))
        self._first_attended_utterance = torch.nn.Parameter(
            torch.FloatTensor(encoder.get_output_dim()))
        torch.nn.init.normal_(self._first_action_embedding)
        torch.nn.init.normal_(self._first_attended_utterance)

        self._beam_search = decoder_beam_search
        self._decoder_trainer = MaximumMarginalLikelihood(beam_size=1)
        self._transition_function = BasicTransitionFunction(
            encoder_output_dim=self._encoder.get_output_dim(),
            action_embedding_dim=action_embedding_dim,
            input_attention=input_attention,
            predict_start_type_separately=False,
            add_action_bias=self._add_action_bias,
            dropout=dropout)
        initializer(self)
示例#3
0
    def setUp(self):
        super().setUp()
        self.decoder_step = BasicTransitionFunction(
            encoder_output_dim=2,
            action_embedding_dim=2,
            input_attention=Attention.by_name("dot_product")(),
            add_action_bias=False,
        )

        batch_indices = [0, 1, 0]
        action_history = [[1], [3, 4], []]
        score = [torch.FloatTensor([x]) for x in [0.1, 1.1, 2.2]]
        hidden_state = torch.FloatTensor([[i, i]
                                          for i in range(len(batch_indices))])
        memory_cell = torch.FloatTensor([[i, i]
                                         for i in range(len(batch_indices))])
        previous_action_embedding = torch.FloatTensor(
            [[i, i] for i in range(len(batch_indices))])
        attended_question = torch.FloatTensor(
            [[i, i] for i in range(len(batch_indices))])
        # This maps non-terminals to valid actions, where the valid actions are grouped by _type_.
        # We have "global" actions, which are from the global grammar, and "linked" actions, which
        # are instance-specific and are generated based on question attention.  Each action type
        # has a tuple which is (input representation, output representation, action ids).
        valid_actions = {
            "e": {
                "global": (
                    torch.FloatTensor([[0, 0], [-1, -1], [-2, -2]]),
                    torch.FloatTensor([[-1, -1], [-2, -2], [-3, -3]]),
                    [0, 1, 2],
                ),
                "linked": (
                    torch.FloatTensor([[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]]),
                    torch.FloatTensor([[3, 3], [4, 4]]),
                    [3, 4],
                ),
            },
            "d": {
                "global":
                (torch.FloatTensor([[0, 0]]), torch.FloatTensor([[-1,
                                                                  -1]]), [0]),
                "linked": (
                    torch.FloatTensor([[-0.1, -0.2, -0.3], [-0.4, -0.5, -0.6],
                                       [-0.7, -0.8, -0.9]]),
                    torch.FloatTensor([[5, 5], [6, 6], [7, 7]]),
                    [1, 2, 3],
                ),
            },
        }
        grammar_state = [
            GrammarStatelet([nonterminal], valid_actions, is_nonterminal)
            for _, nonterminal in zip(batch_indices, ["e", "d", "e"])
        ]
        self.encoder_outputs = torch.FloatTensor([[[1, 2], [3, 4], [5, 6]],
                                                  [[10, 11], [12, 13],
                                                   [14, 15]]])
        self.encoder_output_mask = torch.FloatTensor([[1, 1, 1], [1, 1, 0]])
        self.possible_actions = [
            [
                ("e -> f", False, None),
                ("e -> g", True, None),
                ("e -> h", True, None),
                ("e -> i", True, None),
                ("e -> j", True, None),
            ],
            [
                ("d -> q", True, None),
                ("d -> g", True, None),
                ("d -> h", True, None),
                ("d -> i", True, None),
            ],
        ]

        rnn_state = []
        for i in range(len(batch_indices)):
            rnn_state.append(
                RnnStatelet(
                    hidden_state[i],
                    memory_cell[i],
                    previous_action_embedding[i],
                    attended_question[i],
                    self.encoder_outputs,
                    self.encoder_output_mask,
                ))
        self.state = GrammarBasedState(
            batch_indices=batch_indices,
            action_history=action_history,
            score=score,
            rnn_state=rnn_state,
            grammar_state=grammar_state,
            possible_actions=self.possible_actions,
        )
示例#4
0
class BasicTransitionFunctionTest(AllenNlpTestCase):
    def setUp(self):
        super().setUp()
        self.decoder_step = BasicTransitionFunction(
            encoder_output_dim=2,
            action_embedding_dim=2,
            input_attention=Attention.by_name("dot_product")(),
            add_action_bias=False,
        )

        batch_indices = [0, 1, 0]
        action_history = [[1], [3, 4], []]
        score = [torch.FloatTensor([x]) for x in [0.1, 1.1, 2.2]]
        hidden_state = torch.FloatTensor([[i, i]
                                          for i in range(len(batch_indices))])
        memory_cell = torch.FloatTensor([[i, i]
                                         for i in range(len(batch_indices))])
        previous_action_embedding = torch.FloatTensor(
            [[i, i] for i in range(len(batch_indices))])
        attended_question = torch.FloatTensor(
            [[i, i] for i in range(len(batch_indices))])
        # This maps non-terminals to valid actions, where the valid actions are grouped by _type_.
        # We have "global" actions, which are from the global grammar, and "linked" actions, which
        # are instance-specific and are generated based on question attention.  Each action type
        # has a tuple which is (input representation, output representation, action ids).
        valid_actions = {
            "e": {
                "global": (
                    torch.FloatTensor([[0, 0], [-1, -1], [-2, -2]]),
                    torch.FloatTensor([[-1, -1], [-2, -2], [-3, -3]]),
                    [0, 1, 2],
                ),
                "linked": (
                    torch.FloatTensor([[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]]),
                    torch.FloatTensor([[3, 3], [4, 4]]),
                    [3, 4],
                ),
            },
            "d": {
                "global":
                (torch.FloatTensor([[0, 0]]), torch.FloatTensor([[-1,
                                                                  -1]]), [0]),
                "linked": (
                    torch.FloatTensor([[-0.1, -0.2, -0.3], [-0.4, -0.5, -0.6],
                                       [-0.7, -0.8, -0.9]]),
                    torch.FloatTensor([[5, 5], [6, 6], [7, 7]]),
                    [1, 2, 3],
                ),
            },
        }
        grammar_state = [
            GrammarStatelet([nonterminal], valid_actions, is_nonterminal)
            for _, nonterminal in zip(batch_indices, ["e", "d", "e"])
        ]
        self.encoder_outputs = torch.FloatTensor([[[1, 2], [3, 4], [5, 6]],
                                                  [[10, 11], [12, 13],
                                                   [14, 15]]])
        self.encoder_output_mask = torch.FloatTensor([[1, 1, 1], [1, 1, 0]])
        self.possible_actions = [
            [
                ("e -> f", False, None),
                ("e -> g", True, None),
                ("e -> h", True, None),
                ("e -> i", True, None),
                ("e -> j", True, None),
            ],
            [
                ("d -> q", True, None),
                ("d -> g", True, None),
                ("d -> h", True, None),
                ("d -> i", True, None),
            ],
        ]

        rnn_state = []
        for i in range(len(batch_indices)):
            rnn_state.append(
                RnnStatelet(
                    hidden_state[i],
                    memory_cell[i],
                    previous_action_embedding[i],
                    attended_question[i],
                    self.encoder_outputs,
                    self.encoder_output_mask,
                ))
        self.state = GrammarBasedState(
            batch_indices=batch_indices,
            action_history=action_history,
            score=score,
            rnn_state=rnn_state,
            grammar_state=grammar_state,
            possible_actions=self.possible_actions,
        )

    def test_take_step(self):
        new_states = self.decoder_step.take_step(self.state,
                                                 max_actions=1,
                                                 allowed_actions=[{2, 3}, {0},
                                                                  {4}])

        assert len(new_states) == 2
        new_state = new_states[0]
        assert new_state.batch_indices == [0]

        # We're not going to try to guess which action was taken (or set model weights so that we
        # know which action will be taken); we'll just check that we got one of the actions we were
        # expecting.
        expected_possibilities = {((4, ), ("j", )), ((1, 2), ("h", )),
                                  ((1, 3), ("i", ))}
        actual = (
            tuple(new_state.action_history[0]),
            tuple(new_state.grammar_state[0]._nonterminal_stack),
        )
        assert actual in expected_possibilities

        # These should just be copied from the prior state, no matter which action we took.
        assert_almost_equal(
            new_state.rnn_state[0].encoder_outputs.cpu().numpy(),
            self.encoder_outputs.cpu().numpy())
        assert_almost_equal(
            new_state.rnn_state[0].encoder_output_mask.cpu().numpy(),
            self.encoder_output_mask.cpu().numpy(),
        )
        assert new_state.possible_actions == self.possible_actions

        new_state = new_states[1]
        # For batch instance 1, we should have selected action 0 from group index 1 - there was
        # only one allowed action.
        assert new_state.batch_indices == [1]
        # These two have values taken from what's defined in setUp() - the prior action history
        # ([3, 4]) and the nonterminals corresponding to the action we picked ('q').
        assert new_state.action_history == [[3, 4, 0]]
        assert new_state.grammar_state[0]._nonterminal_stack == ["q"]
        # And these should just be copied from the prior state.
        assert_almost_equal(
            new_state.rnn_state[0].encoder_outputs.cpu().numpy(),
            self.encoder_outputs.cpu().numpy())
        assert_almost_equal(
            new_state.rnn_state[0].encoder_output_mask.cpu().numpy(),
            self.encoder_output_mask.cpu().numpy(),
        )
        assert new_state.possible_actions == self.possible_actions
    def setUp(self):
        super().setUp()
        self.decoder_step = BasicTransitionFunction(encoder_output_dim=2,
                                                    action_embedding_dim=2,
                                                    input_attention=Attention.by_name('dot_product')(),
                                                    num_start_types=3,
                                                    add_action_bias=False)

        batch_indices = [0, 1, 0]
        action_history = [[1], [3, 4], []]
        score = [torch.FloatTensor([x]) for x in [.1, 1.1, 2.2]]
        hidden_state = torch.FloatTensor([[i, i] for i in range(len(batch_indices))])
        memory_cell = torch.FloatTensor([[i, i] for i in range(len(batch_indices))])
        previous_action_embedding = torch.FloatTensor([[i, i] for i in range(len(batch_indices))])
        attended_question = torch.FloatTensor([[i, i] for i in range(len(batch_indices))])
        # This maps non-terminals to valid actions, where the valid actions are grouped by _type_.
        # We have "global" actions, which are from the global grammar, and "linked" actions, which
        # are instance-specific and are generated based on question attention.  Each action type
        # has a tuple which is (input representation, output representation, action ids).
        valid_actions = {
                'e': {
                        'global': (torch.FloatTensor([[0, 0], [-1, -1], [-2, -2]]),
                                   torch.FloatTensor([[-1, -1], [-2, -2], [-3, -3]]),
                                   [0, 1, 2]),
                        'linked': (torch.FloatTensor([[.1, .2, .3], [.4, .5, .6]]),
                                   torch.FloatTensor([[3, 3], [4, 4]]),
                                   [3, 4])
                },
                'd': {
                        'global': (torch.FloatTensor([[0, 0]]),
                                   torch.FloatTensor([[-1, -1]]),
                                   [0]),
                        'linked': (torch.FloatTensor([[-.1, -.2, -.3], [-.4, -.5, -.6], [-.7, -.8, -.9]]),
                                   torch.FloatTensor([[5, 5], [6, 6], [7, 7]]),
                                   [1, 2, 3])
                }
        }
        grammar_state = [GrammarStatelet([nonterminal], valid_actions, is_nonterminal)
                         for _, nonterminal in zip(batch_indices, ['e', 'd', 'e'])]
        self.encoder_outputs = torch.FloatTensor([[[1, 2], [3, 4], [5, 6]], [[10, 11], [12, 13], [14, 15]]])
        self.encoder_output_mask = torch.FloatTensor([[1, 1, 1], [1, 1, 0]])
        self.possible_actions = [[('e -> f', False, None),
                                  ('e -> g', True, None),
                                  ('e -> h', True, None),
                                  ('e -> i', True, None),
                                  ('e -> j', True, None)],
                                 [('d -> q', True, None),
                                  ('d -> g', True, None),
                                  ('d -> h', True, None),
                                  ('d -> i', True, None)]]

        rnn_state = []
        for i in range(len(batch_indices)):
            rnn_state.append(RnnStatelet(hidden_state[i],
                                         memory_cell[i],
                                         previous_action_embedding[i],
                                         attended_question[i],
                                         self.encoder_outputs,
                                         self.encoder_output_mask))
        self.state = GrammarBasedState(batch_indices=batch_indices,
                                       action_history=action_history,
                                       score=score,
                                       rnn_state=rnn_state,
                                       grammar_state=grammar_state,
                                       possible_actions=self.possible_actions)
class BasicTransitionFunctionTest(AllenNlpTestCase):
    def setUp(self):
        super().setUp()
        self.decoder_step = BasicTransitionFunction(encoder_output_dim=2,
                                                    action_embedding_dim=2,
                                                    input_attention=Attention.by_name('dot_product')(),
                                                    num_start_types=3,
                                                    add_action_bias=False)

        batch_indices = [0, 1, 0]
        action_history = [[1], [3, 4], []]
        score = [torch.FloatTensor([x]) for x in [.1, 1.1, 2.2]]
        hidden_state = torch.FloatTensor([[i, i] for i in range(len(batch_indices))])
        memory_cell = torch.FloatTensor([[i, i] for i in range(len(batch_indices))])
        previous_action_embedding = torch.FloatTensor([[i, i] for i in range(len(batch_indices))])
        attended_question = torch.FloatTensor([[i, i] for i in range(len(batch_indices))])
        # This maps non-terminals to valid actions, where the valid actions are grouped by _type_.
        # We have "global" actions, which are from the global grammar, and "linked" actions, which
        # are instance-specific and are generated based on question attention.  Each action type
        # has a tuple which is (input representation, output representation, action ids).
        valid_actions = {
                'e': {
                        'global': (torch.FloatTensor([[0, 0], [-1, -1], [-2, -2]]),
                                   torch.FloatTensor([[-1, -1], [-2, -2], [-3, -3]]),
                                   [0, 1, 2]),
                        'linked': (torch.FloatTensor([[.1, .2, .3], [.4, .5, .6]]),
                                   torch.FloatTensor([[3, 3], [4, 4]]),
                                   [3, 4])
                },
                'd': {
                        'global': (torch.FloatTensor([[0, 0]]),
                                   torch.FloatTensor([[-1, -1]]),
                                   [0]),
                        'linked': (torch.FloatTensor([[-.1, -.2, -.3], [-.4, -.5, -.6], [-.7, -.8, -.9]]),
                                   torch.FloatTensor([[5, 5], [6, 6], [7, 7]]),
                                   [1, 2, 3])
                }
        }
        grammar_state = [GrammarStatelet([nonterminal], valid_actions, is_nonterminal)
                         for _, nonterminal in zip(batch_indices, ['e', 'd', 'e'])]
        self.encoder_outputs = torch.FloatTensor([[[1, 2], [3, 4], [5, 6]], [[10, 11], [12, 13], [14, 15]]])
        self.encoder_output_mask = torch.FloatTensor([[1, 1, 1], [1, 1, 0]])
        self.possible_actions = [[('e -> f', False, None),
                                  ('e -> g', True, None),
                                  ('e -> h', True, None),
                                  ('e -> i', True, None),
                                  ('e -> j', True, None)],
                                 [('d -> q', True, None),
                                  ('d -> g', True, None),
                                  ('d -> h', True, None),
                                  ('d -> i', True, None)]]

        rnn_state = []
        for i in range(len(batch_indices)):
            rnn_state.append(RnnStatelet(hidden_state[i],
                                         memory_cell[i],
                                         previous_action_embedding[i],
                                         attended_question[i],
                                         self.encoder_outputs,
                                         self.encoder_output_mask))
        self.state = GrammarBasedState(batch_indices=batch_indices,
                                       action_history=action_history,
                                       score=score,
                                       rnn_state=rnn_state,
                                       grammar_state=grammar_state,
                                       possible_actions=self.possible_actions)

    def test_take_step(self):
        new_states = self.decoder_step.take_step(self.state,
                                                 max_actions=1,
                                                 allowed_actions=[{2, 3}, {0}, {4}])

        assert len(new_states) == 2
        new_state = new_states[0]
        assert new_state.batch_indices == [0]

        # We're not going to try to guess which action was taken (or set model weights so that we
        # know which action will be taken); we'll just check that we got one of the actions we were
        # expecting.
        expected_possibilities = set([((4,), ('j',)), ((1, 2), ('h',)), ((1, 3), ('i',))])
        actual = (tuple(new_state.action_history[0]), tuple(new_state.grammar_state[0]._nonterminal_stack))
        assert actual in expected_possibilities

        # These should just be copied from the prior state, no matter which action we took.
        assert_almost_equal(new_state.rnn_state[0].encoder_outputs.cpu().numpy(),
                            self.encoder_outputs.cpu().numpy())
        assert_almost_equal(new_state.rnn_state[0].encoder_output_mask.cpu().numpy(),
                            self.encoder_output_mask.cpu().numpy())
        assert new_state.possible_actions == self.possible_actions

        new_state = new_states[1]
        # For batch instance 1, we should have selected action 0 from group index 1 - there was
        # only one allowed action.
        assert new_state.batch_indices == [1]
        # These two have values taken from what's defined in setUp() - the prior action history
        # ([3, 4]) and the nonterminals corresponding to the action we picked ('q').
        assert new_state.action_history == [[3, 4, 0]]
        assert new_state.grammar_state[0]._nonterminal_stack == ['q']
        # And these should just be copied from the prior state.
        assert_almost_equal(new_state.rnn_state[0].encoder_outputs.cpu().numpy(),
                            self.encoder_outputs.cpu().numpy())
        assert_almost_equal(new_state.rnn_state[0].encoder_output_mask.cpu().numpy(),
                            self.encoder_output_mask.cpu().numpy())
        assert new_state.possible_actions == self.possible_actions
示例#7
0
    def setUp(self):
        super().setUp()
        self.decoder_step = BasicTransitionFunction(
            encoder_output_dim=2,
            action_embedding_dim=2,
            input_attention=Attention.by_name('dot_product')(),
            num_start_types=3,
            add_action_bias=False)

        batch_indices = [0, 1, 0]
        action_history = [[1], [3, 4], []]
        score = [torch.FloatTensor([x]) for x in [.1, 1.1, 2.2]]
        hidden_state = torch.FloatTensor([[i, i]
                                          for i in range(len(batch_indices))])
        memory_cell = torch.FloatTensor([[i, i]
                                         for i in range(len(batch_indices))])
        previous_action_embedding = torch.FloatTensor(
            [[i, i] for i in range(len(batch_indices))])
        attended_question = torch.FloatTensor(
            [[i, i] for i in range(len(batch_indices))])
        # This maps non-terminals to valid actions, where the valid actions are grouped by _type_.
        # We have "global" actions, which are from the global grammar, and "linked" actions, which
        # are instance-specific and are generated based on question attention.  Each action type
        # has a tuple which is (input representation, output representation, action ids).
        valid_actions = {
            'e': {
                'global': (torch.FloatTensor([[0, 0], [-1, -1], [-2, -2]]),
                           torch.FloatTensor([[-1, -1], [-2, -2],
                                              [-3, -3]]), [0, 1, 2]),
                'linked': (torch.FloatTensor([[.1, .2, .3], [.4, .5, .6]]),
                           torch.FloatTensor([[3, 3], [4, 4]]), [3, 4])
            },
            'd': {
                'global':
                (torch.FloatTensor([[0, 0]]), torch.FloatTensor([[-1,
                                                                  -1]]), [0]),
                'linked': (torch.FloatTensor([[-.1, -.2, -.3], [-.4, -.5, -.6],
                                              [-.7, -.8, -.9]]),
                           torch.FloatTensor([[5, 5], [6, 6], [7,
                                                               7]]), [1, 2, 3])
            }
        }
        grammar_state = [
            GrammarStatelet([nonterminal], {}, valid_actions, {},
                            is_nonterminal)
            for _, nonterminal in zip(batch_indices, ['e', 'd', 'e'])
        ]
        self.encoder_outputs = torch.FloatTensor([[[1, 2], [3, 4], [5, 6]],
                                                  [[10, 11], [12, 13],
                                                   [14, 15]]])
        self.encoder_output_mask = torch.FloatTensor([[1, 1, 1], [1, 1, 0]])
        self.possible_actions = [[
            ('e -> f', False, None), ('e -> g', True, None),
            ('e -> h', True, None), ('e -> i', True, None),
            ('e -> j', True, None)
        ],
                                 [
                                     ('d -> q', True, None),
                                     ('d -> g', True, None),
                                     ('d -> h', True, None),
                                     ('d -> i', True, None)
                                 ]]

        rnn_state = []
        for i in range(len(batch_indices)):
            rnn_state.append(
                RnnStatelet(hidden_state[i], memory_cell[i],
                            previous_action_embedding[i], attended_question[i],
                            self.encoder_outputs, self.encoder_output_mask))
        self.state = GrammarBasedState(batch_indices=batch_indices,
                                       action_history=action_history,
                                       score=score,
                                       rnn_state=rnn_state,
                                       grammar_state=grammar_state,
                                       possible_actions=self.possible_actions)