def _build_transforms(transforms: Union[Params, List[Params]]): if isinstance(transforms, list): transforms = [ RegistrableTransform.from_params(param) for param in transforms ] else: transforms = RegistrableTransform.from_params(transforms) return transforms
def test_registrable_transform(self) -> None: registered_list = set( Registrable._registry[RegistrableTransform].keys()) assert registered_list == set([ "standard-scaler", "min-max-scaler", "label-encoder", "logarithmer", "flatten", "hashname", ]) assert (RegistrableTransform.by_name("standard-scaler").__name__ == "StandardScaler") assert RegistrableTransform.by_name( "min-max-scaler").__name__ == "MinMaxScaler" assert RegistrableTransform.by_name( "label-encoder").__name__ == "LabelEncoder" assert RegistrableTransform.by_name( "logarithmer").__name__ == "Logarithmer" assert RegistrableTransform.by_name( "flatten").__name__ == "FlattenTransformer" assert RegistrableTransform.by_name("hashname").__name__ == "HashName"
def test_flatten(self): params = Params.from_file(self.FIXTURES_ROOT / "transforms" / "preprocessing" / "flatten.jsonnet") transform = RegistrableTransform.from_params(params=params) assert isinstance(transform, FlattenTransformer)
def test_logarithmer(self): params = Params.from_file(self.FIXTURES_ROOT / "transforms" / "preprocessing" / "logarithmer.jsonnet") transform = RegistrableTransform.from_params(params=params) assert isinstance(transform, Logarithmer)
def test_min_max_scalar(self): params = Params.from_file(self.FIXTURES_ROOT / "transforms" / "preprocessing" / "min_max_scalar.jsonnet") transform = RegistrableTransform.from_params(params=params) assert isinstance(transform, MinMaxScaler)
def test_hash_name_from_params(self): params = Params.from_file(self.FIXTURES_ROOT / "transforms" / "hash_name" / "hash_name.jsonnet") transform = RegistrableTransform.from_params(params=params) assert isinstance(transform, HashName)