def test_mention_recall(self): metric = MentionRecall() batched_top_spans = torch.tensor([[[2, 4], [1, 3]], [[5, 6], [7, 8]]]) batched_metadata = [{ "clusters": [[(2, 4), (3, 5)]] }, { "clusters": [[(5, 6), (7, 8)]] }] metric(batched_top_spans, batched_metadata) recall = metric.get_metric() assert recall == 0.75
def __init__(self, vocab: Vocabulary, make_feedforward: Callable, span_emb_dim: int, feature_size: int, spans_per_word: float, max_antecedents: int, coref_prop: int = 0, coref_prop_dropout_f: float = 0.0, regularizer: Optional[RegularizerApplicator] = None) -> None: super(CorefResolver, self).__init__(vocab, regularizer) # 10 possible distance buckets. self._num_distance_buckets = 10 self._spans_per_word = spans_per_word self._max_antecedents = max_antecedents self._distance_embedding = Embedding( embedding_dim=feature_size, num_embeddings=self._num_distance_buckets) antecedent_input_dim = 3 * span_emb_dim + feature_size antecedent_feedforward = make_feedforward( input_dim=antecedent_input_dim) self._antecedent_feedforward = TimeDistributed(antecedent_feedforward) mention_feedforward = make_feedforward(input_dim=span_emb_dim) feedforward_scorer = torch.nn.Sequential( TimeDistributed(mention_feedforward), TimeDistributed( torch.nn.Linear(mention_feedforward.get_output_dim(), 1))) self._mention_pruner = Pruner(feedforward_scorer) self._antecedent_scorer = TimeDistributed( torch.nn.Linear(antecedent_feedforward.get_output_dim(), 1)) self._mention_recall = MentionRecall() self._conll_coref_scores = ConllCorefScores() self.coref_prop = coref_prop self._f_network = FeedForward(input_dim=2 * span_emb_dim, num_layers=1, hidden_dims=span_emb_dim, activations=torch.nn.Sigmoid(), dropout=coref_prop_dropout_f) self.antecedent_softmax = torch.nn.Softmax(dim=-1)
def test_distributed_mention_recall(self): batched_top_spans = [ torch.tensor([[[2, 4], [1, 3]]]), torch.tensor([[[5, 6], [7, 8]]]) ] batched_metadata = [[{ "clusters": [[(2, 4), (3, 5)]] }], [{ "clusters": [[(5, 6), (7, 8)]] }]] metric_kwargs = { "batched_top_spans": batched_top_spans, "batched_metadata": batched_metadata, } desired_values = 0.75 run_distributed_test( [-1, -1], global_distributed_metric, MentionRecall(), metric_kwargs, desired_values, exact=True, )
def __init__( self, vocab: Vocabulary, text_field_embedder: TextFieldEmbedder, context_layer: Seq2SeqEncoder, mention_feedforward: FeedForward, antecedent_feedforward: FeedForward, feature_size: int, max_span_width: int, spans_per_word: float, max_antecedents: int, coarse_to_fine: bool = False, inference_order: int = 1, lexical_dropout: float = 0.2, initializer: InitializerApplicator = InitializerApplicator(), **kwargs ) -> None: super().__init__(vocab, **kwargs) self._text_field_embedder = text_field_embedder self._context_layer = context_layer self._mention_feedforward = TimeDistributed(mention_feedforward) self._mention_scorer = TimeDistributed( torch.nn.Linear(mention_feedforward.get_output_dim(), 1) ) self._antecedent_feedforward = TimeDistributed(antecedent_feedforward) self._antecedent_scorer = TimeDistributed( torch.nn.Linear(antecedent_feedforward.get_output_dim(), 1) ) self._endpoint_span_extractor = EndpointSpanExtractor( context_layer.get_output_dim(), combination="x,y", num_width_embeddings=max_span_width, span_width_embedding_dim=feature_size, bucket_widths=False, ) self._attentive_span_extractor = SelfAttentiveSpanExtractor( input_dim=text_field_embedder.get_output_dim() ) # 10 possible distance buckets. self._num_distance_buckets = 10 self._distance_embedding = Embedding( embedding_dim=feature_size, num_embeddings=self._num_distance_buckets ) self._max_span_width = max_span_width self._spans_per_word = spans_per_word self._max_antecedents = max_antecedents self._coarse_to_fine = coarse_to_fine if self._coarse_to_fine: self._coarse2fine_scorer = torch.nn.Linear( mention_feedforward.get_input_dim(), mention_feedforward.get_input_dim() ) self._inference_order = inference_order if self._inference_order > 1: self._span_updating_gated_sum = GatedSum(mention_feedforward.get_input_dim()) self._mention_recall = MentionRecall() self._conll_coref_scores = ConllCorefScores() if lexical_dropout > 0: self._lexical_dropout = torch.nn.Dropout(p=lexical_dropout) else: self._lexical_dropout = lambda x: x initializer(self)
class CoreferenceResolver(Model): """ This `Model` implements the coreference resolution model described in [Higher-order Coreference Resolution with Coarse-to-fine Inference](https://arxiv.org/pdf/1804.05392.pdf) by Lee et al., 2018. The basic outline of this model is to get an embedded representation of each span in the document. These span representations are scored and used to prune away spans that are unlikely to occur in a coreference cluster. For the remaining spans, the model decides which antecedent span (if any) they are coreferent with. The resulting coreference links, after applying transitivity, imply a clustering of the spans in the document. # Parameters vocab : `Vocabulary` text_field_embedder : `TextFieldEmbedder` Used to embed the `text` `TextField` we get as input to the model. context_layer : `Seq2SeqEncoder` This layer incorporates contextual information for each word in the document. mention_feedforward : `FeedForward` This feedforward network is applied to the span representations which is then scored by a linear layer. antecedent_feedforward : `FeedForward` This feedforward network is applied to pairs of span representation, along with any pairwise features, which is then scored by a linear layer. feature_size : `int` The embedding size for all the embedded features, such as distances or span widths. max_span_width : `int` The maximum width of candidate spans. spans_per_word: `float`, required. A multiplier between zero and one which controls what percentage of candidate mention spans we retain with respect to the number of words in the document. max_antecedents: `int`, required. For each mention which survives the pruning stage, we consider this many antecedents. coarse_to_fine: `bool`, optional (default = `False`) Whether or not to apply the coarse-to-fine filtering. inference_order: `int`, optional (default = `1`) The number of inference orders. When greater than 1, the span representations are updated and coreference scores re-computed. lexical_dropout : `int` The probability of dropping out dimensions of the embedded text. initializer : `InitializerApplicator`, optional (default=`InitializerApplicator()`) Used to initialize the model parameters. """ def __init__( self, vocab: Vocabulary, text_field_embedder: TextFieldEmbedder, context_layer: Seq2SeqEncoder, mention_feedforward: FeedForward, antecedent_feedforward: FeedForward, feature_size: int, max_span_width: int, spans_per_word: float, max_antecedents: int, coarse_to_fine: bool = False, inference_order: int = 1, lexical_dropout: float = 0.2, initializer: InitializerApplicator = InitializerApplicator(), **kwargs ) -> None: super().__init__(vocab, **kwargs) self._text_field_embedder = text_field_embedder self._context_layer = context_layer self._mention_feedforward = TimeDistributed(mention_feedforward) self._mention_scorer = TimeDistributed( torch.nn.Linear(mention_feedforward.get_output_dim(), 1) ) self._antecedent_feedforward = TimeDistributed(antecedent_feedforward) self._antecedent_scorer = TimeDistributed( torch.nn.Linear(antecedent_feedforward.get_output_dim(), 1) ) self._endpoint_span_extractor = EndpointSpanExtractor( context_layer.get_output_dim(), combination="x,y", num_width_embeddings=max_span_width, span_width_embedding_dim=feature_size, bucket_widths=False, ) self._attentive_span_extractor = SelfAttentiveSpanExtractor( input_dim=text_field_embedder.get_output_dim() ) # 10 possible distance buckets. self._num_distance_buckets = 10 self._distance_embedding = Embedding( embedding_dim=feature_size, num_embeddings=self._num_distance_buckets ) self._max_span_width = max_span_width self._spans_per_word = spans_per_word self._max_antecedents = max_antecedents self._coarse_to_fine = coarse_to_fine if self._coarse_to_fine: self._coarse2fine_scorer = torch.nn.Linear( mention_feedforward.get_input_dim(), mention_feedforward.get_input_dim() ) self._inference_order = inference_order if self._inference_order > 1: self._span_updating_gated_sum = GatedSum(mention_feedforward.get_input_dim()) self._mention_recall = MentionRecall() self._conll_coref_scores = ConllCorefScores() if lexical_dropout > 0: self._lexical_dropout = torch.nn.Dropout(p=lexical_dropout) else: self._lexical_dropout = lambda x: x initializer(self) @overrides def forward( self, # type: ignore text: TextFieldTensors, spans: torch.IntTensor, span_labels: torch.IntTensor = None, metadata: List[Dict[str, Any]] = None, ) -> Dict[str, torch.Tensor]: """ # Parameters text : `TextFieldTensors`, required. The output of a `TextField` representing the text of the document. spans : `torch.IntTensor`, required. A tensor of shape (batch_size, num_spans, 2), representing the inclusive start and end indices of candidate spans for mentions. Comes from a `ListField[SpanField]` of indices into the text of the document. span_labels : `torch.IntTensor`, optional (default = `None`). A tensor of shape (batch_size, num_spans), representing the cluster ids of each span, or -1 for those which do not appear in any clusters. metadata : `List[Dict[str, Any]]`, optional (default = `None`). A metadata dictionary for each instance in the batch. We use the "original_text" and "clusters" keys from this dictionary, which respectively have the original text and the annotated gold coreference clusters for that instance. # Returns An output dictionary consisting of: top_spans : `torch.IntTensor` A tensor of shape `(batch_size, num_spans_to_keep, 2)` representing the start and end word indices of the top spans that survived the pruning stage. antecedent_indices : `torch.IntTensor` A tensor of shape `(num_spans_to_keep, max_antecedents)` representing for each top span the index (with respect to top_spans) of the possible antecedents the model considered. predicted_antecedents : `torch.IntTensor` A tensor of shape `(batch_size, num_spans_to_keep)` representing, for each top span, the index (with respect to antecedent_indices) of the most likely antecedent. -1 means there was no predicted link. loss : `torch.FloatTensor`, optional A scalar loss to be optimised. """ # Shape: (batch_size, document_length, embedding_size) text_embeddings = self._lexical_dropout(self._text_field_embedder(text)) batch_size = spans.size(0) document_length = text_embeddings.size(1) num_spans = spans.size(1) # Shape: (batch_size, document_length) text_mask = util.get_text_field_mask(text) # Shape: (batch_size, num_spans) span_mask = (spans[:, :, 0] >= 0).squeeze(-1) # SpanFields return -1 when they are used as padding. As we do # some comparisons based on span widths when we attend over the # span representations that we generate from these indices, we # need them to be <= 0. This is only relevant in edge cases where # the number of spans we consider after the pruning stage is >= the # total number of spans, because in this case, it is possible we might # consider a masked span. # Shape: (batch_size, num_spans, 2) spans = F.relu(spans.float()).long() # Shape: (batch_size, document_length, encoding_dim) contextualized_embeddings = self._context_layer(text_embeddings, text_mask) # Shape: (batch_size, num_spans, 2 * encoding_dim + feature_size) endpoint_span_embeddings = self._endpoint_span_extractor(contextualized_embeddings, spans) # Shape: (batch_size, num_spans, emebedding_size) attended_span_embeddings = self._attentive_span_extractor(text_embeddings, spans) # Shape: (batch_size, num_spans, emebedding_size + 2 * encoding_dim + feature_size) span_embeddings = torch.cat([endpoint_span_embeddings, attended_span_embeddings], -1) # Prune based on mention scores. num_spans_to_keep = int(math.floor(self._spans_per_word * document_length)) num_spans_to_keep = min(num_spans_to_keep, num_spans) # Shape: (batch_size, num_spans) span_mention_scores = self._mention_scorer( self._mention_feedforward(span_embeddings) ).squeeze(-1) # Shape: (batch_size, num_spans) for all 3 tensors top_span_mention_scores, top_span_mask, top_span_indices = util.masked_topk( span_mention_scores, span_mask, num_spans_to_keep ) # Shape: (batch_size * num_spans_to_keep) # torch.index_select only accepts 1D indices, but here # we need to select spans for each element in the batch. # This reformats the indices to take into account their # index into the batch. We precompute this here to make # the multiple calls to util.batched_index_select below more efficient. flat_top_span_indices = util.flatten_and_batch_shift_indices(top_span_indices, num_spans) # Compute final predictions for which spans to consider as mentions. # Shape: (batch_size, num_spans_to_keep, 2) top_spans = util.batched_index_select(spans, top_span_indices, flat_top_span_indices) # Shape: (batch_size, num_spans_to_keep, embedding_size) top_span_embeddings = util.batched_index_select( span_embeddings, top_span_indices, flat_top_span_indices ) # Compute indices for antecedent spans to consider. max_antecedents = min(self._max_antecedents, num_spans_to_keep) # Now that we have our variables in terms of num_spans_to_keep, we need to # compare span pairs to decide each span's antecedent. Each span can only # have prior spans as antecedents, and we only consider up to max_antecedents # prior spans. So the first thing we do is construct a matrix mapping a span's # index to the indices of its allowed antecedents. # Once we have this matrix, we reformat our variables again to get embeddings # for all valid antecedents for each span. This gives us variables with shapes # like (batch_size, num_spans_to_keep, max_antecedents, embedding_size), which # we can use to make coreference decisions between valid span pairs. if self._coarse_to_fine: pruned_antecedents = self._coarse_to_fine_pruning( top_span_embeddings, top_span_mention_scores, top_span_mask, max_antecedents ) else: pruned_antecedents = self._distance_pruning( top_span_embeddings, top_span_mention_scores, max_antecedents ) # Shape: (batch_size, num_spans_to_keep, max_antecedents) for all 4 tensors ( top_partial_coreference_scores, top_antecedent_mask, top_antecedent_offsets, top_antecedent_indices, ) = pruned_antecedents flat_top_antecedent_indices = util.flatten_and_batch_shift_indices( top_antecedent_indices, num_spans_to_keep ) # Shape: (batch_size, num_spans_to_keep, max_antecedents, embedding_size) top_antecedent_embeddings = util.batched_index_select( top_span_embeddings, top_antecedent_indices, flat_top_antecedent_indices ) # Shape: (batch_size, num_spans_to_keep, 1 + max_antecedents) coreference_scores = self._compute_coreference_scores( top_span_embeddings, top_antecedent_embeddings, top_partial_coreference_scores, top_antecedent_mask, top_antecedent_offsets, ) for _ in range(self._inference_order - 1): dummy_mask = top_antecedent_mask.new_ones(batch_size, num_spans_to_keep, 1) # Shape: (batch_size, num_spans_to_keep, 1 + max_antecedents,) top_antecedent_with_dummy_mask = torch.cat([dummy_mask, top_antecedent_mask], -1) # Shape: (batch_size, num_spans_to_keep, 1 + max_antecedents) attention_weight = util.masked_softmax( coreference_scores, top_antecedent_with_dummy_mask, memory_efficient=True ) # Shape: (batch_size, num_spans_to_keep, 1 + max_antecedents, embedding_size) top_antecedent_with_dummy_embeddings = torch.cat( [top_span_embeddings.unsqueeze(2), top_antecedent_embeddings], 2 ) # Shape: (batch_size, num_spans_to_keep, embedding_size) attended_embeddings = util.weighted_sum( top_antecedent_with_dummy_embeddings, attention_weight ) # Shape: (batch_size, num_spans_to_keep, embedding_size) top_span_embeddings = self._span_updating_gated_sum( top_span_embeddings, attended_embeddings ) # Shape: (batch_size, num_spans_to_keep, max_antecedents, embedding_size) top_antecedent_embeddings = util.batched_index_select( top_span_embeddings, top_antecedent_indices, flat_top_antecedent_indices ) # Shape: (batch_size, num_spans_to_keep, 1 + max_antecedents) coreference_scores = self._compute_coreference_scores( top_span_embeddings, top_antecedent_embeddings, top_partial_coreference_scores, top_antecedent_mask, top_antecedent_offsets, ) # We now have, for each span which survived the pruning stage, # a predicted antecedent. This implies a clustering if we group # mentions which refer to each other in a chain. # Shape: (batch_size, num_spans_to_keep) _, predicted_antecedents = coreference_scores.max(2) # Subtract one here because index 0 is the "no antecedent" class, # so this makes the indices line up with actual spans if the prediction # is greater than -1. predicted_antecedents -= 1 output_dict = { "top_spans": top_spans, "antecedent_indices": top_antecedent_indices, "predicted_antecedents": predicted_antecedents, } if span_labels is not None: # Find the gold labels for the spans which we kept. # Shape: (batch_size, num_spans_to_keep, 1) pruned_gold_labels = util.batched_index_select( span_labels.unsqueeze(-1), top_span_indices, flat_top_span_indices ) # Shape: (batch_size, num_spans_to_keep, max_antecedents) antecedent_labels = util.batched_index_select( pruned_gold_labels, top_antecedent_indices, flat_top_antecedent_indices ).squeeze(-1) antecedent_labels = util.replace_masked_values( antecedent_labels, top_antecedent_mask, -100 ) # Compute labels. # Shape: (batch_size, num_spans_to_keep, max_antecedents + 1) gold_antecedent_labels = self._compute_antecedent_gold_labels( pruned_gold_labels, antecedent_labels ) # Now, compute the loss using the negative marginal log-likelihood. # This is equal to the log of the sum of the probabilities of all antecedent predictions # that would be consistent with the data, in the sense that we are minimising, for a # given span, the negative marginal log likelihood of all antecedents which are in the # same gold cluster as the span we are currently considering. Each span i predicts a # single antecedent j, but there might be several prior mentions k in the same # coreference cluster that would be valid antecedents. Our loss is the sum of the # probability assigned to all valid antecedents. This is a valid objective for # clustering as we don't mind which antecedent is predicted, so long as they are in # the same coreference cluster. coreference_log_probs = util.masked_log_softmax( coreference_scores, top_span_mask.unsqueeze(-1) ) correct_antecedent_log_probs = coreference_log_probs + gold_antecedent_labels.log() negative_marginal_log_likelihood = -util.logsumexp(correct_antecedent_log_probs).sum() self._mention_recall(top_spans, metadata) self._conll_coref_scores( top_spans, top_antecedent_indices, predicted_antecedents, metadata ) output_dict["loss"] = negative_marginal_log_likelihood if metadata is not None: output_dict["document"] = [x["original_text"] for x in metadata] return output_dict @overrides def make_output_human_readable(self, output_dict: Dict[str, torch.Tensor]): """ Converts the list of spans and predicted antecedent indices into clusters of spans for each element in the batch. # Parameters output_dict : `Dict[str, torch.Tensor]`, required. The result of calling :func:`forward` on an instance or batch of instances. # Returns The same output dictionary, but with an additional `clusters` key: clusters : `List[List[List[Tuple[int, int]]]]` A nested list, representing, for each instance in the batch, the list of clusters, which are in turn comprised of a list of (start, end) inclusive spans into the original document. """ # A tensor of shape (batch_size, num_spans_to_keep, 2), representing # the start and end indices of each span. batch_top_spans = output_dict["top_spans"].detach().cpu() # A tensor of shape (batch_size, num_spans_to_keep) representing, for each span, # the index into `antecedent_indices` which specifies the antecedent span. Additionally, # the index can be -1, specifying that the span has no predicted antecedent. batch_predicted_antecedents = output_dict["predicted_antecedents"].detach().cpu() # A tensor of shape (num_spans_to_keep, max_antecedents), representing the indices # of the predicted antecedents with respect to the 2nd dimension of `batch_top_spans` # for each antecedent we considered. batch_antecedent_indices = output_dict["antecedent_indices"].detach().cpu() batch_clusters: List[List[List[Tuple[int, int]]]] = [] # Calling zip() on two tensors results in an iterator over their # first dimension. This is iterating over instances in the batch. for top_spans, predicted_antecedents, antecedent_indices in zip( batch_top_spans, batch_predicted_antecedents, batch_antecedent_indices ): spans_to_cluster_ids: Dict[Tuple[int, int], int] = {} clusters: List[List[Tuple[int, int]]] = [] for i, (span, predicted_antecedent) in enumerate(zip(top_spans, predicted_antecedents)): if predicted_antecedent < 0: # We don't care about spans which are # not co-referent with anything. continue # Find the right cluster to update with this span. # To do this, we find the row in `antecedent_indices` # corresponding to this span we are considering. # The predicted antecedent is then an index into this list # of indices, denoting the span from `top_spans` which is the # most likely antecedent. predicted_index = antecedent_indices[i, predicted_antecedent] antecedent_span = ( top_spans[predicted_index, 0].item(), top_spans[predicted_index, 1].item(), ) # Check if we've seen the span before. if antecedent_span in spans_to_cluster_ids: predicted_cluster_id: int = spans_to_cluster_ids[antecedent_span] else: # We start a new cluster. predicted_cluster_id = len(clusters) # Append a new cluster containing only this span. clusters.append([antecedent_span]) # Record the new id of this span. spans_to_cluster_ids[antecedent_span] = predicted_cluster_id # Now add the span we are currently considering. span_start, span_end = span[0].item(), span[1].item() clusters[predicted_cluster_id].append((span_start, span_end)) spans_to_cluster_ids[(span_start, span_end)] = predicted_cluster_id batch_clusters.append(clusters) output_dict["clusters"] = batch_clusters return output_dict @overrides def get_metrics(self, reset: bool = False) -> Dict[str, float]: mention_recall = self._mention_recall.get_metric(reset) coref_precision, coref_recall, coref_f1 = self._conll_coref_scores.get_metric(reset) return { "coref_precision": coref_precision, "coref_recall": coref_recall, "coref_f1": coref_f1, "mention_recall": mention_recall, } @staticmethod def _generate_valid_antecedents( num_spans_to_keep: int, max_antecedents: int, device: int ) -> Tuple[torch.IntTensor, torch.IntTensor, torch.BoolTensor]: """ This method generates possible antecedents per span which survived the pruning stage. This procedure is `generic across the batch`. The reason this is the case is that each span in a batch can be coreferent with any previous span, but here we are computing the possible `indices` of these spans. So, regardless of the batch, the 1st span _cannot_ have any antecedents, because there are none to select from. Similarly, each element can only predict previous spans, so this returns a matrix of shape (num_spans_to_keep, max_antecedents), where the (i,j)-th index is equal to (i - 1) - j if j <= i, or zero otherwise. # Parameters num_spans_to_keep : `int`, required. The number of spans that were kept while pruning. max_antecedents : `int`, required. The maximum number of antecedent spans to consider for every span. device : `int`, required. The CUDA device to use. # Returns valid_antecedent_indices : `torch.LongTensor` The indices of every antecedent to consider with respect to the top k spans. Has shape `(num_spans_to_keep, max_antecedents)`. valid_antecedent_offsets : `torch.LongTensor` The distance between the span and each of its antecedents in terms of the number of considered spans (i.e not the word distance between the spans). Has shape `(1, max_antecedents)`. valid_antecedent_mask : `torch.BoolTensor` The mask representing whether each antecedent span is valid. Required since different spans have different numbers of valid antecedents. For example, the first span in the document should have no valid antecedents. Has shape `(1, num_spans_to_keep, max_antecedents)`. """ # Shape: (num_spans_to_keep, 1) target_indices = util.get_range_vector(num_spans_to_keep, device).unsqueeze(1) # Shape: (1, max_antecedents) valid_antecedent_offsets = (util.get_range_vector(max_antecedents, device) + 1).unsqueeze(0) # This is a broadcasted subtraction. # Shape: (num_spans_to_keep, max_antecedents) raw_antecedent_indices = target_indices - valid_antecedent_offsets # In our matrix of indices, the upper triangular part will be negative # because the offsets will be > the target indices. We want to mask these, # because these are exactly the indices which we don't want to predict, per span. # Shape: (1, num_spans_to_keep, max_antecedents) valid_antecedent_mask = (raw_antecedent_indices >= 0).unsqueeze(0) # Shape: (num_spans_to_keep, max_antecedents) valid_antecedent_indices = F.relu(raw_antecedent_indices.float()).long() return valid_antecedent_indices, valid_antecedent_offsets, valid_antecedent_mask def _distance_pruning( self, top_span_embeddings: torch.FloatTensor, top_span_mention_scores: torch.FloatTensor, max_antecedents: int, ) -> Tuple[torch.FloatTensor, torch.BoolTensor, torch.LongTensor, torch.LongTensor]: """ Generates antecedents for each span and prunes down to `max_antecedents`. This method prunes antecedents only based on distance (i.e. number of intervening spans). The closest antecedents are kept. # Parameters top_span_embeddings: `torch.FloatTensor`, required. The embeddings of the top spans. (batch_size, num_spans_to_keep, embedding_size). top_span_mention_scores: `torch.FloatTensor`, required. The mention scores of the top spans. (batch_size, num_spans_to_keep). max_antecedents: `int`, required. The maximum number of antecedents to keep for each span. # Returns top_partial_coreference_scores: `torch.FloatTensor` The partial antecedent scores for each span-antecedent pair. Computed by summing the span mentions scores of the span and the antecedent. This score is partial because compared to the full coreference scores, it lacks the interaction term w * FFNN([g_i, g_j, g_i * g_j, features]). (batch_size, num_spans_to_keep, max_antecedents) top_antecedent_mask: `torch.BoolTensor` The mask representing whether each antecedent span is valid. Required since different spans have different numbers of valid antecedents. For example, the first span in the document should have no valid antecedents. (batch_size, num_spans_to_keep, max_antecedents) top_antecedent_offsets: `torch.LongTensor` The distance between the span and each of its antecedents in terms of the number of considered spans (i.e not the word distance between the spans). (batch_size, num_spans_to_keep, max_antecedents) top_antecedent_indices: `torch.LongTensor` The indices of every antecedent to consider with respect to the top k spans. (batch_size, num_spans_to_keep, max_antecedents) """ # These antecedent matrices are independent of the batch dimension - they're just a function # of the span's position in top_spans. # The spans are in document order, so we can just use the relative # index of the spans to know which other spans are allowed antecedents. num_spans_to_keep = top_span_embeddings.size(1) device = util.get_device_of(top_span_embeddings) # Shapes: # (num_spans_to_keep, max_antecedents), # (1, max_antecedents), # (1, num_spans_to_keep, max_antecedents) ( top_antecedent_indices, top_antecedent_offsets, top_antecedent_mask, ) = self._generate_valid_antecedents( # noqa num_spans_to_keep, max_antecedents, device ) # Shape: (batch_size, num_spans_to_keep, max_antecedents) top_antecedent_mention_scores = util.flattened_index_select( top_span_mention_scores.unsqueeze(-1), top_antecedent_indices ).squeeze(-1) # Shape: (batch_size, num_spans_to_keep, max_antecedents) * 4 top_partial_coreference_scores = ( top_span_mention_scores.unsqueeze(-1) + top_antecedent_mention_scores ) top_antecedent_indices = top_antecedent_indices.unsqueeze(0).expand_as( top_partial_coreference_scores ) top_antecedent_offsets = top_antecedent_offsets.unsqueeze(0).expand_as( top_partial_coreference_scores ) top_antecedent_mask = top_antecedent_mask.expand_as(top_partial_coreference_scores) return ( top_partial_coreference_scores, top_antecedent_mask, top_antecedent_offsets, top_antecedent_indices, ) def _coarse_to_fine_pruning( self, top_span_embeddings: torch.FloatTensor, top_span_mention_scores: torch.FloatTensor, top_span_mask: torch.BoolTensor, max_antecedents: int, ) -> Tuple[torch.FloatTensor, torch.BoolTensor, torch.LongTensor, torch.LongTensor]: """ Generates antecedents for each span and prunes down to `max_antecedents`. This method prunes antecedents using a fast bilinar interaction score between a span and a candidate antecedent, and the highest-scoring antecedents are kept. # Parameters top_span_embeddings: `torch.FloatTensor`, required. The embeddings of the top spans. (batch_size, num_spans_to_keep, embedding_size). top_span_mention_scores: `torch.FloatTensor`, required. The mention scores of the top spans. (batch_size, num_spans_to_keep). top_span_mask: `torch.BoolTensor`, required. The mask for the top spans. (batch_size, num_spans_to_keep). max_antecedents: `int`, required. The maximum number of antecedents to keep for each span. # Returns top_partial_coreference_scores: `torch.FloatTensor` The partial antecedent scores for each span-antecedent pair. Computed by summing the span mentions scores of the span and the antecedent as well as a bilinear interaction term. This score is partial because compared to the full coreference scores, it lacks the interaction term `w * FFNN([g_i, g_j, g_i * g_j, features])`. `(batch_size, num_spans_to_keep, max_antecedents)` top_antecedent_mask: `torch.BoolTensor` The mask representing whether each antecedent span is valid. Required since different spans have different numbers of valid antecedents. For example, the first span in the document should have no valid antecedents. `(batch_size, num_spans_to_keep, max_antecedents)` top_antecedent_offsets: `torch.LongTensor` The distance between the span and each of its antecedents in terms of the number of considered spans (i.e not the word distance between the spans). `(batch_size, num_spans_to_keep, max_antecedents)` top_antecedent_indices: `torch.LongTensor` The indices of every antecedent to consider with respect to the top k spans. `(batch_size, num_spans_to_keep, max_antecedents)` """ batch_size, num_spans_to_keep = top_span_embeddings.size()[:2] device = util.get_device_of(top_span_embeddings) # Shape: (1, num_spans_to_keep, num_spans_to_keep) _, _, valid_antecedent_mask = self._generate_valid_antecedents( num_spans_to_keep, num_spans_to_keep, device ) mention_one_score = top_span_mention_scores.unsqueeze(1) mention_two_score = top_span_mention_scores.unsqueeze(2) bilinear_weights = self._coarse2fine_scorer(top_span_embeddings).transpose(1, 2) bilinear_score = torch.matmul(top_span_embeddings, bilinear_weights) # Shape: (batch_size, num_spans_to_keep, num_spans_to_keep); broadcast op partial_antecedent_scores = mention_one_score + mention_two_score + bilinear_score # Shape: (batch_size, num_spans_to_keep, num_spans_to_keep); broadcast op span_pair_mask = top_span_mask.unsqueeze(-1) & valid_antecedent_mask # Shape: # (batch_size, num_spans_to_keep, max_antecedents) * 3 ( top_partial_coreference_scores, top_antecedent_mask, top_antecedent_indices, ) = util.masked_topk(partial_antecedent_scores, span_pair_mask, max_antecedents) top_span_range = util.get_range_vector(num_spans_to_keep, device) # Shape: (num_spans_to_keep, num_spans_to_keep); broadcast op valid_antecedent_offsets = top_span_range.unsqueeze(-1) - top_span_range.unsqueeze(0) # TODO: we need to make `batched_index_select` more general to make this less awkward. top_antecedent_offsets = util.batched_index_select( valid_antecedent_offsets.unsqueeze(0) .expand(batch_size, num_spans_to_keep, num_spans_to_keep) .reshape(batch_size * num_spans_to_keep, num_spans_to_keep, 1), top_antecedent_indices.view(-1, max_antecedents), ).reshape(batch_size, num_spans_to_keep, max_antecedents) return ( top_partial_coreference_scores, top_antecedent_mask, top_antecedent_offsets, top_antecedent_indices, ) def _compute_span_pair_embeddings( self, top_span_embeddings: torch.FloatTensor, antecedent_embeddings: torch.FloatTensor, antecedent_offsets: torch.FloatTensor, ): """ Computes an embedding representation of pairs of spans for the pairwise scoring function to consider. This includes both the original span representations, the element-wise similarity of the span representations, and an embedding representation of the distance between the two spans. # Parameters top_span_embeddings : `torch.FloatTensor`, required. Embedding representations of the top spans. Has shape (batch_size, num_spans_to_keep, embedding_size). antecedent_embeddings : `torch.FloatTensor`, required. Embedding representations of the antecedent spans we are considering for each top span. Has shape (batch_size, num_spans_to_keep, max_antecedents, embedding_size). antecedent_offsets : `torch.IntTensor`, required. The offsets between each top span and its antecedent spans in terms of spans we are considering. Has shape (batch_size, num_spans_to_keep, max_antecedents). # Returns span_pair_embeddings : `torch.FloatTensor` Embedding representation of the pair of spans to consider. Has shape (batch_size, num_spans_to_keep, max_antecedents, embedding_size) """ # Shape: (batch_size, num_spans_to_keep, max_antecedents, embedding_size) target_embeddings = top_span_embeddings.unsqueeze(2).expand_as(antecedent_embeddings) # Shape: (batch_size, num_spans_to_keep, max_antecedents, embedding_size) antecedent_distance_embeddings = self._distance_embedding( util.bucket_values(antecedent_offsets, num_total_buckets=self._num_distance_buckets) ) # Shape: (batch_size, num_spans_to_keep, max_antecedents, embedding_size) span_pair_embeddings = torch.cat( [ target_embeddings, antecedent_embeddings, antecedent_embeddings * target_embeddings, antecedent_distance_embeddings, ], -1, ) return span_pair_embeddings @staticmethod def _compute_antecedent_gold_labels( top_span_labels: torch.IntTensor, antecedent_labels: torch.IntTensor ): """ Generates a binary indicator for every pair of spans. This label is one if and only if the pair of spans belong to the same cluster. The labels are augmented with a dummy antecedent at the zeroth position, which represents the prediction that a span does not have any antecedent. # Parameters top_span_labels : `torch.IntTensor`, required. The cluster id label for every span. The id is arbitrary, as we just care about the clustering. Has shape (batch_size, num_spans_to_keep). antecedent_labels : `torch.IntTensor`, required. The cluster id label for every antecedent span. The id is arbitrary, as we just care about the clustering. Has shape (batch_size, num_spans_to_keep, max_antecedents). # Returns pairwise_labels_with_dummy_label : `torch.FloatTensor` A binary tensor representing whether a given pair of spans belong to the same cluster in the gold clustering. Has shape (batch_size, num_spans_to_keep, max_antecedents + 1). """ # Shape: (batch_size, num_spans_to_keep, max_antecedents) target_labels = top_span_labels.expand_as(antecedent_labels) same_cluster_indicator = (target_labels == antecedent_labels).float() non_dummy_indicator = (target_labels >= 0).float() pairwise_labels = same_cluster_indicator * non_dummy_indicator # Shape: (batch_size, num_spans_to_keep, 1) dummy_labels = (1 - pairwise_labels).prod(-1, keepdim=True) # Shape: (batch_size, num_spans_to_keep, max_antecedents + 1) pairwise_labels_with_dummy_label = torch.cat([dummy_labels, pairwise_labels], -1) return pairwise_labels_with_dummy_label def _compute_coreference_scores( self, top_span_embeddings: torch.FloatTensor, top_antecedent_embeddings: torch.FloatTensor, top_partial_coreference_scores: torch.FloatTensor, top_antecedent_mask: torch.BoolTensor, top_antecedent_offsets: torch.FloatTensor, ) -> torch.FloatTensor: """ Computes scores for every pair of spans. Additionally, a dummy label is included, representing the decision that the span is not coreferent with anything. For the dummy label, the score is always zero. For the true antecedent spans, the score consists of the pairwise antecedent score and the unary mention scores for the span and its antecedent. The factoring allows the model to blame many of the absent links on bad spans, enabling the pruning strategy used in the forward pass. # Parameters top_span_embeddings : `torch.FloatTensor`, required. Embedding representations of the kept spans. Has shape (batch_size, num_spans_to_keep, embedding_size) top_antecedent_embeddings: `torch.FloatTensor`, required. The embeddings of antecedents for each span candidate. Has shape (batch_size, num_spans_to_keep, max_antecedents, embedding_size) top_partial_coreference_scores : `torch.FloatTensor`, required. Sum of span mention score and antecedent mention score. The coarse to fine settings has an additional term which is the coarse bilinear score. (batch_size, num_spans_to_keep, max_antecedents). top_antecedent_mask : `torch.BoolTensor`, required. The mask for valid antecedents. (batch_size, num_spans_to_keep, max_antecedents). top_antecedent_offsets : `torch.FloatTensor`, required. The distance between the span and each of its antecedents in terms of the number of considered spans (i.e not the word distance between the spans). (batch_size, num_spans_to_keep, max_antecedents). # Returns coreference_scores : `torch.FloatTensor` A tensor of shape (batch_size, num_spans_to_keep, max_antecedents + 1), representing the unormalised score for each (span, antecedent) pair we considered. """ # Shape: (batch_size, num_spans_to_keep, max_antecedents, embedding_size) span_pair_embeddings = self._compute_span_pair_embeddings( top_span_embeddings, top_antecedent_embeddings, top_antecedent_offsets ) # Shape: (batch_size, num_spans_to_keep, max_antecedents) antecedent_scores = self._antecedent_scorer( self._antecedent_feedforward(span_pair_embeddings) ).squeeze(-1) antecedent_scores += top_partial_coreference_scores antecedent_scores = util.replace_masked_values( antecedent_scores, top_antecedent_mask, util.min_value_of_dtype(antecedent_scores.dtype) ) # Shape: (batch_size, num_spans_to_keep, 1) shape = [antecedent_scores.size(0), antecedent_scores.size(1), 1] dummy_scores = antecedent_scores.new_zeros(*shape) # Shape: (batch_size, num_spans_to_keep, max_antecedents + 1) coreference_scores = torch.cat([dummy_scores, antecedent_scores], -1) return coreference_scores default_predictor = "coreference_resolution"
class CorefResolver(Model): """ TODO(dwadden) document correctly. Parameters ---------- mention_feedforward : ``FeedForward`` This feedforward network is applied to the span representations which is then scored by a linear layer. antecedent_feedforward: ``FeedForward`` This feedforward network is applied to pairs of span representation, along with any pairwise features, which is then scored by a linear layer. feature_size: ``int`` The embedding size for all the embedded features, such as distances or span widths. spans_per_word: float, required. A multiplier between zero and one which controls what percentage of candidate mention spans we retain with respect to the number of words in the document. max_antecedents: int, required. For each mention which survives the pruning stage, we consider this many antecedents. lexical_dropout: ``int`` The probability of dropping out dimensions of the embedded text. regularizer : ``RegularizerApplicator``, optional (default=``None``) If provided, will be used to calculate the regularization penalty during training. """ def __init__(self, vocab: Vocabulary, make_feedforward: Callable, span_emb_dim: int, feature_size: int, spans_per_word: float, max_antecedents: int, coref_prop: int = 0, coref_prop_dropout_f: float = 0.0, regularizer: Optional[RegularizerApplicator] = None) -> None: super(CorefResolver, self).__init__(vocab, regularizer) # 10 possible distance buckets. self._num_distance_buckets = 10 self._spans_per_word = spans_per_word self._max_antecedents = max_antecedents self._distance_embedding = Embedding( embedding_dim=feature_size, num_embeddings=self._num_distance_buckets) antecedent_input_dim = 3 * span_emb_dim + feature_size antecedent_feedforward = make_feedforward( input_dim=antecedent_input_dim) self._antecedent_feedforward = TimeDistributed(antecedent_feedforward) mention_feedforward = make_feedforward(input_dim=span_emb_dim) feedforward_scorer = torch.nn.Sequential( TimeDistributed(mention_feedforward), TimeDistributed( torch.nn.Linear(mention_feedforward.get_output_dim(), 1))) self._mention_pruner = Pruner(feedforward_scorer) self._antecedent_scorer = TimeDistributed( torch.nn.Linear(antecedent_feedforward.get_output_dim(), 1)) self._mention_recall = MentionRecall() self._conll_coref_scores = ConllCorefScores() self.coref_prop = coref_prop self._f_network = FeedForward(input_dim=2 * span_emb_dim, num_layers=1, hidden_dims=span_emb_dim, activations=torch.nn.Sigmoid(), dropout=coref_prop_dropout_f) self.antecedent_softmax = torch.nn.Softmax(dim=-1) def update_spans(self, output_dict, span_embeddings_batched, indices): new_span_embeddings_batched = span_embeddings_batched.clone() offsets = {} for key in indices: offset = 0 while indices[key][offset] == 0: offset += 1 offsets[key] = offset for doc_key in output_dict: span_ix = output_dict[doc_key]["span_ix"] top_span_embeddings = output_dict[doc_key]["top_span_embeddings"] for ix, el in enumerate( output_dict[doc_key]["top_span_indices"].view(-1)): # This floor division is correct. We're doing division with a remainder, where # `row_ix` is the quotient (plus an offset added at the end) and `col_ix` is the # remainder. This converts from a span index to a row and column index in the span # embedding matrix. row_ix = span_ix[el] // span_embeddings_batched.shape[ 1] + offsets[doc_key] col_ix = span_ix[el] % span_embeddings_batched.shape[1] new_span_embeddings_batched[row_ix, col_ix] = top_span_embeddings[0, ix] return new_span_embeddings_batched def coref_propagation(self, output_dict): for doc_key in output_dict: output_dict[doc_key] = self.coref_propagation_doc( output_dict[doc_key]) return output_dict def coref_propagation_doc(self, output_dict): coreference_scores = output_dict["coreference_scores"] top_span_embeddings = output_dict["top_span_embeddings"] antecedent_indices = output_dict["antecedent_indices"] for t in range(self.coref_prop): assert coreference_scores.shape[1] == antecedent_indices.shape[0] assert coreference_scores.shape[2] - 1 == antecedent_indices.shape[ 1] assert top_span_embeddings.shape[1] == coreference_scores.shape[1] assert antecedent_indices.max() <= top_span_embeddings.shape[1] antecedent_distribution = self.antecedent_softmax( coreference_scores)[:, :, 1:] top_span_emb_repeated = top_span_embeddings.repeat( antecedent_distribution.shape[2], 1, 1) if antecedent_indices.shape[0] == antecedent_indices.shape[1]: selected_top_span_embs = util.batched_index_select( top_span_emb_repeated, antecedent_indices).unsqueeze(0) entity_embs = (selected_top_span_embs.permute([3, 0, 1, 2]) * antecedent_distribution).permute([1, 2, 3, 0]).sum(dim=2) else: ant_var1 = antecedent_indices.unsqueeze(0).unsqueeze( -1).repeat(1, 1, 1, top_span_embeddings.shape[-1]) top_var1 = top_span_embeddings.unsqueeze(1).repeat( 1, antecedent_distribution.shape[1], 1, 1) entity_embs = ( torch.gather(top_var1, 2, ant_var1).permute([3, 0, 1, 2]) * antecedent_distribution).permute([1, 2, 3, 0]).sum(dim=2) f_network_input = torch.cat([top_span_embeddings, entity_embs], dim=-1) f_weights = self._f_network(f_network_input) top_span_embeddings = f_weights * top_span_embeddings + ( 1.0 - f_weights) * entity_embs coreference_scores = self.get_coref_scores( top_span_embeddings, self._mention_pruner._scorer(top_span_embeddings), output_dict["antecedent_indices"], output_dict["valid_antecedent_offsets"], output_dict["valid_antecedent_log_mask"]) output_dict["coreference_scores"] = coreference_scores output_dict["top_span_embeddings"] = top_span_embeddings return output_dict #@overrides #def forward(self, # type: ignore def compute_representations( self, # type: ignore spans_batched: torch.IntTensor, span_mask_batched, span_embeddings_batched, # TODO(dwadden) add type. sentence_lengths, coref_labels_batched: torch.IntTensor = None, metadata=None) -> Dict[str, torch.Tensor]: """ Run the forward pass. Since we can only have coreferences between spans in the same document, we loop over the documents in the batch. This function assumes that the inputs are in order, but may go across documents. """ output_docs = {} # TODO(dwadden) Update this when I implement multiple documents per minibatch. doc_keys = [metadata.doc_key] * len(metadata) uniq_keys = [] for entry in doc_keys: if entry not in uniq_keys: uniq_keys.append(entry) indices = {} for key in uniq_keys: ix_list = [1 if entry == key else 0 for entry in doc_keys] indices[key] = ix_list doc_metadata = metadata ix = torch.tensor(ix_list, dtype=torch.bool) # If we don't have coref labels, leave as None; else get the right batch. coref_labels = (coref_labels_batched[ix] if coref_labels_batched is not None else coref_labels_batched) if sentence_lengths[ix].sum().item() > 1: output_docs[key] = self._compute_representations_doc( spans_batched[ix], span_mask_batched[ix], span_embeddings_batched[ix], sentence_lengths[ix], ix, coref_labels, doc_metadata) return output_docs, indices def predict_labels(self, output_docs, metadata): for key in output_docs: output_docs[key] = self.predict_labels_doc(output_docs[key]) return self.collect_losses(output_docs) def collect_losses(self, output_docs): uniq_keys = [el for el in output_docs] losses = [entry.get("loss") for entry in output_docs.values()] # If we're predicting, there won't be a loss. no_loss = [loss is None for loss in losses] if any(no_loss) and not all(no_loss): raise ValueError( "All docs in batch should either have a loss, or not have one." ) no_loss = no_loss[0] if no_loss: loss = None else: losses = torch.cat( [entry["loss"].unsqueeze(0) for entry in output_docs.values()]) loss = torch.sum(losses) # At train time, return a separate output dict for each document. if self.training: output = {"doc": output_docs} # At test time, we evaluate a whole document at a time. Just return the results for that # document. else: assert len(uniq_keys) == 1 key = uniq_keys[0] output = output_docs[key] # Add the loss if we have one. if loss is not None: output["loss"] = loss return output def _compute_representations_doc( self, # type: ignore spans_batched: torch.IntTensor, span_mask_batched, span_embeddings_batched, # TODO(dwadden) add type. sentence_lengths, ix, coref_labels_batched: torch.IntTensor = None, metadata: List[Dict[str, Any]] = None) -> Dict[str, torch.Tensor]: # pylint: disable=arguments-differ """ Run the forward pass for a single document. Important: This function assumes that sentences are going to be passed in in sorted order, from the same document. """ # TODO(dwadden) How to handle case where only one span from a cluster makes it into the # minibatch? Should I get rid of the cluster? # TODO(dwadden) Write quick unit tests for correctness, time permitting. span_ix = span_mask_batched.view(-1).nonzero( as_tuple=False).squeeze() # Indices of the spans to keep. spans, span_embeddings = self._flatten_spans(spans_batched, span_ix, span_embeddings_batched, sentence_lengths) coref_labels = self._flatten_coref_labels(coref_labels_batched, span_ix) document_length = sentence_lengths.sum().item() num_spans = spans.size(1) # Prune based on mention scores. Make sure we keep at least 1. num_spans_to_keep = max( 2, int(math.ceil(self._spans_per_word * document_length))) # Since there's only one minibatch, there aren't any masked spans for us. The span mask is # always 1. span_mask = torch.ones(num_spans, device=spans_batched.device).unsqueeze(0) (top_span_embeddings, top_span_mask, top_span_indices, top_span_mention_scores, num_items_kept) = self._mention_pruner(span_embeddings, span_mask, num_spans_to_keep) top_span_mask = top_span_mask.unsqueeze(-1) # Shape: (batch_size * num_spans_to_keep) flat_top_span_indices = util.flatten_and_batch_shift_indices( top_span_indices, num_spans) # Compute final predictions for which spans to consider as mentions. # Shape: (batch_size, num_spans_to_keep, 2) top_spans = util.batched_index_select(spans, top_span_indices, flat_top_span_indices) # Compute indices for antecedent spans to consider. max_antecedents = min(self._max_antecedents, num_spans_to_keep) # Shapes: # (num_spans_to_keep, max_antecedents), # (1, max_antecedents), # (1, num_spans_to_keep, max_antecedents) valid_antecedent_indices, valid_antecedent_offsets, valid_antecedent_log_mask = \ self._generate_valid_antecedents(num_spans_to_keep, max_antecedents, util.get_device_of(span_embeddings)) coreference_scores = self.get_coref_scores(top_span_embeddings, top_span_mention_scores, valid_antecedent_indices, valid_antecedent_offsets, valid_antecedent_log_mask) output_dict = { "top_spans": top_spans, "antecedent_indices": valid_antecedent_indices, "valid_antecedent_log_mask": valid_antecedent_log_mask, "valid_antecedent_offsets": valid_antecedent_offsets, "top_span_indices": top_span_indices, "top_span_mask": top_span_mask, "top_span_embeddings": top_span_embeddings, "flat_top_span_indices": flat_top_span_indices, "coref_labels": coref_labels, "coreference_scores": coreference_scores, "sentence_lengths": sentence_lengths, "span_ix": span_ix, "metadata": metadata } return output_dict def get_coref_scores(self, top_span_embeddings, top_span_mention_scores, valid_antecedent_indices, valid_antecedent_offsets, valid_antecedent_log_mask): candidate_antecedent_embeddings = util.flattened_index_select( top_span_embeddings, valid_antecedent_indices) # Shape: (batch_size, num_spans_to_keep, max_antecedents) candidate_antecedent_mention_scores = util.flattened_index_select( top_span_mention_scores, valid_antecedent_indices).squeeze(-1) # Compute antecedent scores. # Shape: (batch_size, num_spans_to_keep, max_antecedents, embedding_size) span_pair_embeddings = self._compute_span_pair_embeddings( top_span_embeddings, candidate_antecedent_embeddings, valid_antecedent_offsets) # Shape: (batch_size, num_spans_to_keep, 1 + max_antecedents) coreference_scores = self._compute_coreference_scores( span_pair_embeddings, top_span_mention_scores, candidate_antecedent_mention_scores, valid_antecedent_log_mask) return coreference_scores def predict_labels_doc(self, output_dict): # Shape: (batch_size, num_spans_to_keep) coref_labels = output_dict["coref_labels"] coreference_scores = output_dict["coreference_scores"] _, predicted_antecedents = coreference_scores.max(2) # Subtract one here because index 0 is the "no antecedent" class, # so this makes the indices line up with actual spans if the prediction # is greater than -1. predicted_antecedents -= 1 output_dict["predicted_antecedents"] = predicted_antecedents top_span_indices = output_dict["top_span_indices"] flat_top_span_indices = output_dict["flat_top_span_indices"] valid_antecedent_indices = output_dict["antecedent_indices"] valid_antecedent_log_mask = output_dict["valid_antecedent_log_mask"] top_spans = output_dict["top_spans"] top_span_mask = output_dict["top_span_mask"] metadata = output_dict["metadata"] sentence_lengths = output_dict["sentence_lengths"] if coref_labels is not None: # Find the gold labels for the spans which we kept. pruned_gold_labels = util.batched_index_select( coref_labels.unsqueeze(-1), top_span_indices, flat_top_span_indices) antecedent_labels = util.flattened_index_select( pruned_gold_labels, valid_antecedent_indices).squeeze(-1) # There's an integer wrap-around happening here. It occurs in the original code. antecedent_labels += valid_antecedent_log_mask.long() # Compute labels. # Shape: (batch_size, num_spans_to_keep, max_antecedents + 1) gold_antecedent_labels = self._compute_antecedent_gold_labels( pruned_gold_labels, antecedent_labels) # Now, compute the loss using the negative marginal log-likelihood. coreference_log_probs = util.masked_log_softmax( coreference_scores, top_span_mask) correct_antecedent_log_probs = coreference_log_probs + gold_antecedent_labels.log( ) negative_marginal_log_likelihood = -util.logsumexp( correct_antecedent_log_probs).sum() # Need to get cluster data in same form as for original AllenNLP coref code so that the # evaluation code works. evaluation_metadata = self._make_evaluation_metadata( metadata, sentence_lengths) self._mention_recall(top_spans, evaluation_metadata) # TODO(dwadden) Shouldnt need to do the unsqueeze here; figure out what's happening. self._conll_coref_scores(top_spans, valid_antecedent_indices.unsqueeze(0), predicted_antecedents, evaluation_metadata) output_dict["loss"] = negative_marginal_log_likelihood return output_dict @overrides def make_output_human_readable(self, output_dict: Dict[str, torch.Tensor]): """ Converts the list of spans and predicted antecedent indices into clusters of spans for each element in the batch. Parameters ---------- output_dict : ``Dict[str, torch.Tensor]``, required. The result of calling :func:`forward` on an instance or batch of instances. Returns ------- The same output dictionary, but with an additional ``clusters`` key: clusters : ``List[List[List[Tuple[int, int]]]]`` A nested list, representing, for each instance in the batch, the list of clusters, which are in turn comprised of a list of (start, end) inclusive spans into the original document. """ # A tensor of shape (batch_size, num_spans_to_keep, 2), representing # the start and end indices of each span. batch_top_spans = output_dict["top_spans"].detach().cpu() # A tensor of shape (batch_size, num_spans_to_keep) representing, for each span, # the index into ``antecedent_indices`` which specifies the antecedent span. Additionally, # the index can be -1, specifying that the span has no predicted antecedent. batch_predicted_antecedents = output_dict[ "predicted_antecedents"].detach().cpu() # A tensor of shape (num_spans_to_keep, max_antecedents), representing the indices # of the predicted antecedents with respect to the 2nd dimension of ``batch_top_spans`` # for each antecedent we considered. antecedent_indices = output_dict["antecedent_indices"].detach().cpu() batch_clusters: List[List[List[Tuple[int, int]]]] = [] # Calling zip() on two tensors results in an iterator over their # first dimension. This is iterating over instances in the batch. for top_spans, predicted_antecedents in zip( batch_top_spans, batch_predicted_antecedents): spans_to_cluster_ids: Dict[Tuple[int, int], int] = {} clusters: List[List[Tuple[int, int]]] = [] for i, (span, predicted_antecedent) in enumerate( zip(top_spans, predicted_antecedents)): if predicted_antecedent < 0: # We don't care about spans which are # not co-referent with anything. continue # Find the right cluster to update with this span. predicted_index = antecedent_indices[i, predicted_antecedent] antecedent_span = (top_spans[predicted_index, 0].item(), top_spans[predicted_index, 1].item()) # Check if we've seen the span before. if antecedent_span in spans_to_cluster_ids: predicted_cluster_id: int = spans_to_cluster_ids[ antecedent_span] else: # We start a new cluster. predicted_cluster_id = len(clusters) # Append a new cluster containing only this span. clusters.append([antecedent_span]) # Record the new id of this span. spans_to_cluster_ids[ antecedent_span] = predicted_cluster_id # Now add the span we are currently considering. span_start, span_end = span[0].item(), span[1].item() clusters[predicted_cluster_id].append((span_start, span_end)) spans_to_cluster_ids[(span_start, span_end)] = predicted_cluster_id batch_clusters.append(clusters) output_dict["predicted_clusters"] = batch_clusters return output_dict @overrides def get_metrics(self, reset: bool = False) -> Dict[str, float]: mention_recall = self._mention_recall.get_metric(reset) coref_precision, coref_recall, coref_f1 = self._conll_coref_scores.get_metric( reset) return { "coref_precision": coref_precision, "coref_recall": coref_recall, "coref_f1": coref_f1, "coref_mention_recall": mention_recall } @staticmethod def _generate_valid_antecedents( num_spans_to_keep: int, max_antecedents: int, device: int ) -> Tuple[torch.IntTensor, torch.IntTensor, torch.FloatTensor]: """ This method generates possible antecedents per span which survived the pruning stage. This procedure is `generic across the batch`. The reason this is the case is that each span in a batch can be coreferent with any previous span, but here we are computing the possible `indices` of these spans. So, regardless of the batch, the 1st span _cannot_ have any antecedents, because there are none to select from. Similarly, each element can only predict previous spans, so this returns a matrix of shape (num_spans_to_keep, max_antecedents), where the (i,j)-th index is equal to (i - 1) - j if j <= i, or zero otherwise. Parameters ---------- num_spans_to_keep : ``int``, required. The number of spans that were kept while pruning. max_antecedents : ``int``, required. The maximum number of antecedent spans to consider for every span. device: ``int``, required. The CUDA device to use. Returns ------- valid_antecedent_indices : ``torch.IntTensor`` The indices of every antecedent to consider with respect to the top k spans. Has shape ``(num_spans_to_keep, max_antecedents)``. valid_antecedent_offsets : ``torch.IntTensor`` The distance between the span and each of its antecedents in terms of the number of considered spans (i.e not the word distance between the spans). Has shape ``(1, max_antecedents)``. valid_antecedent_log_mask : ``torch.FloatTensor`` The logged mask representing whether each antecedent span is valid. Required since different spans have different numbers of valid antecedents. For example, the first span in the document should have no valid antecedents. Has shape ``(1, num_spans_to_keep, max_antecedents)``. """ # Shape: (num_spans_to_keep, 1) target_indices = util.get_range_vector(num_spans_to_keep, device).unsqueeze(1) # Shape: (1, max_antecedents) valid_antecedent_offsets = ( util.get_range_vector(max_antecedents, device) + 1).unsqueeze(0) # This is a broadcasted subtraction. # Shape: (num_spans_to_keep, max_antecedents) raw_antecedent_indices = target_indices - valid_antecedent_offsets # Shape: (1, num_spans_to_keep, max_antecedents) valid_antecedent_log_mask = (raw_antecedent_indices >= 0).float().unsqueeze(0).log() # Shape: (num_spans_to_keep, max_antecedents) valid_antecedent_indices = F.relu( raw_antecedent_indices.float()).long() return valid_antecedent_indices, valid_antecedent_offsets, valid_antecedent_log_mask def _compute_span_pair_embeddings(self, top_span_embeddings: torch.FloatTensor, antecedent_embeddings: torch.FloatTensor, antecedent_offsets: torch.FloatTensor): """ Computes an embedding representation of pairs of spans for the pairwise scoring function to consider. This includes both the original span representations, the element-wise similarity of the span representations, and an embedding representation of the distance between the two spans. Parameters ---------- top_span_embeddings : ``torch.FloatTensor``, required. Embedding representations of the top spans. Has shape (batch_size, num_spans_to_keep, embedding_size). antecedent_embeddings : ``torch.FloatTensor``, required. Embedding representations of the antecedent spans we are considering for each top span. Has shape (batch_size, num_spans_to_keep, max_antecedents, embedding_size). antecedent_offsets : ``torch.IntTensor``, required. The offsets between each top span and its antecedent spans in terms of spans we are considering. Has shape (1, max_antecedents). Returns ------- span_pair_embeddings : ``torch.FloatTensor`` Embedding representation of the pair of spans to consider. Has shape (batch_size, num_spans_to_keep, max_antecedents, embedding_size) """ # Shape: (batch_size, num_spans_to_keep, max_antecedents, embedding_size) target_embeddings = top_span_embeddings.unsqueeze(2).expand_as( antecedent_embeddings) # Shape: (1, max_antecedents, embedding_size) antecedent_distance_embeddings = self._distance_embedding( util.bucket_values(antecedent_offsets, num_total_buckets=self._num_distance_buckets)) # Shape: (1, 1, max_antecedents, embedding_size) antecedent_distance_embeddings = antecedent_distance_embeddings.unsqueeze( 0) expanded_distance_embeddings_shape = ( antecedent_embeddings.size(0), antecedent_embeddings.size(1), antecedent_embeddings.size(2), antecedent_distance_embeddings.size(-1)) # Shape: (batch_size, num_spans_to_keep, max_antecedents, embedding_size) antecedent_distance_embeddings = antecedent_distance_embeddings.expand( *expanded_distance_embeddings_shape) # Shape: (batch_size, num_spans_to_keep, max_antecedents, embedding_size) span_pair_embeddings = torch.cat([ target_embeddings, antecedent_embeddings, antecedent_embeddings * target_embeddings, antecedent_distance_embeddings ], -1) return span_pair_embeddings @staticmethod def _compute_antecedent_gold_labels(top_coref_labels: torch.IntTensor, antecedent_labels: torch.IntTensor): """ Generates a binary indicator for every pair of spans. This label is one if and only if the pair of spans belong to the same cluster. The labels are augmented with a dummy antecedent at the zeroth position, which represents the prediction that a span does not have any antecedent. Parameters ---------- top_coref_labels : ``torch.IntTensor``, required. The cluster id label for every span. The id is arbitrary, as we just care about the clustering. Has shape (batch_size, num_spans_to_keep). antecedent_labels : ``torch.IntTensor``, required. The cluster id label for every antecedent span. The id is arbitrary, as we just care about the clustering. Has shape (batch_size, num_spans_to_keep, max_antecedents). Returns ------- pairwise_labels_with_dummy_label : ``torch.FloatTensor`` A binary tensor representing whether a given pair of spans belong to the same cluster in the gold clustering. Has shape (batch_size, num_spans_to_keep, max_antecedents + 1). """ # Shape: (batch_size, num_spans_to_keep, max_antecedents) target_labels = top_coref_labels.expand_as(antecedent_labels) same_cluster_indicator = (target_labels == antecedent_labels).float() non_dummy_indicator = (target_labels >= 0).float() pairwise_labels = same_cluster_indicator * non_dummy_indicator # Shape: (batch_size, num_spans_to_keep, 1) dummy_labels = (1 - pairwise_labels).prod(-1, keepdim=True) # Shape: (batch_size, num_spans_to_keep, max_antecedents + 1) pairwise_labels_with_dummy_label = torch.cat( [dummy_labels, pairwise_labels], -1) return pairwise_labels_with_dummy_label def _compute_coreference_scores( self, pairwise_embeddings: torch.FloatTensor, top_span_mention_scores: torch.FloatTensor, antecedent_mention_scores: torch.FloatTensor, antecedent_log_mask: torch.FloatTensor) -> torch.FloatTensor: """ Computes scores for every pair of spans. Additionally, a dummy label is included, representing the decision that the span is not coreferent with anything. For the dummy label, the score is always zero. For the true antecedent spans, the score consists of the pairwise antecedent score and the unary mention scores for the span and its antecedent. The factoring allows the model to blame many of the absent links on bad spans, enabling the pruning strategy used in the forward pass. Parameters ---------- pairwise_embeddings: ``torch.FloatTensor``, required. Embedding representations of pairs of spans. Has shape (batch_size, num_spans_to_keep, max_antecedents, encoding_dim) top_span_mention_scores: ``torch.FloatTensor``, required. Mention scores for every span. Has shape (batch_size, num_spans_to_keep, max_antecedents). antecedent_mention_scores: ``torch.FloatTensor``, required. Mention scores for every antecedent. Has shape (batch_size, num_spans_to_keep, max_antecedents). antecedent_log_mask: ``torch.FloatTensor``, required. The log of the mask for valid antecedents. Returns ------- coreference_scores: ``torch.FloatTensor`` A tensor of shape (batch_size, num_spans_to_keep, max_antecedents + 1), representing the unormalised score for each (span, antecedent) pair we considered. """ # Shape: (batch_size, num_spans_to_keep, max_antecedents) antecedent_scores = self._antecedent_scorer( self._antecedent_feedforward(pairwise_embeddings)).squeeze(-1) antecedent_scores += top_span_mention_scores + antecedent_mention_scores antecedent_scores += antecedent_log_mask # Shape: (batch_size, num_spans_to_keep, 1) shape = [antecedent_scores.size(0), antecedent_scores.size(1), 1] dummy_scores = antecedent_scores.new_zeros(*shape) # Shape: (batch_size, num_spans_to_keep, max_antecedents + 1) coreference_scores = torch.cat([dummy_scores, antecedent_scores], -1) return coreference_scores def _flatten_spans(self, spans_batched, span_ix, span_embeddings_batched, sentence_lengths): """ Spans are input with each minibatch as a sentence. For coref, it's easier to flatten them out and consider all sentences together as a document. """ # Get feature size and indices of good spans feature_size = self._mention_pruner._scorer[0]._module.input_dim # Change the span offsets to document-level, flatten, and keep good ones. sentence_offset = shared.cumsum_shifted(sentence_lengths).unsqueeze( 1).unsqueeze(2) spans_offset = spans_batched + sentence_offset spans_flat = spans_offset.view(-1, 2) spans_flat = spans_flat[span_ix].unsqueeze(0) # Flatten the span embeddings and keep the good ones. emb_flat = span_embeddings_batched.view(-1, feature_size) span_embeddings_flat = emb_flat[span_ix].unsqueeze(0) return spans_flat, span_embeddings_flat @staticmethod def _flatten_coref_labels(coref_labels_batched, span_ix): "Flatten the coref labels." # If we don't have labels, return None. if coref_labels_batched is None: return coref_labels_batched labels_flat = coref_labels_batched.view(-1)[span_ix] labels_flat = labels_flat.unsqueeze(0) return labels_flat @staticmethod def _make_evaluation_metadata(metadata, sentence_lengths): """ Get cluster metadata in form to feed into evaluation scripts. For each entry in minibatch, return a dict with a metadata field, which is a list whose entries are lists specifying the spans involved in a given cluster. For coreference evaluation, we need to make the span indices with respect to the entire "document" (i.e. all sentences in minibatch), rather than with respect to each sentence. """ # TODO(dwadden) Write tests to make sure sentence starts match lengths of sentences in # metadata. # As elsewhere, we assume the batch size will always be 1. cluster_dict = {} sentence_offset = shared.cumsum_shifted(sentence_lengths).tolist() for entry, sentence_start in zip(metadata, sentence_offset): for span, cluster_id in entry.cluster_dict.items(): span_offset = (span[0] + sentence_start, span[1] + sentence_start) if cluster_id in cluster_dict: cluster_dict[cluster_id].append(span_offset) else: cluster_dict[cluster_id] = [span_offset] # The `values` method returns an iterator, and I need a list. clusters = [val for val in cluster_dict.values()] return [dict(clusters=clusters)]