示例#1
0
 def __init__(
     self,
     vocab: Vocabulary,
     sentence_embedder: TextFieldEmbedder,
     action_embedding_dim: int,
     encoder: Seq2SeqEncoder,
     attention: Attention,
     decoder_beam_search: BeamSearch,
     max_decoding_steps: int,
     dropout: float = 0.0,
 ) -> None:
     super(NlvrDirectSemanticParser, self).__init__(
         vocab=vocab,
         sentence_embedder=sentence_embedder,
         action_embedding_dim=action_embedding_dim,
         encoder=encoder,
         dropout=dropout,
     )
     self._decoder_trainer = MaximumMarginalLikelihood()
     self._decoder_step = BasicTransitionFunction(
         encoder_output_dim=self._encoder.get_output_dim(),
         action_embedding_dim=action_embedding_dim,
         input_attention=attention,
         activation=Activation.by_name("tanh")(),
         add_action_bias=False,
         dropout=dropout,
     )
     self._decoder_beam_search = decoder_beam_search
     self._max_decoding_steps = max_decoding_steps
     self._action_padding_index = -1
    def __init__(
        self,
        vocab: Vocabulary,
        utterance_embedder: TextFieldEmbedder,
        action_embedding_dim: int,
        encoder: Seq2SeqEncoder,
        decoder_beam_search: BeamSearch,
        max_decoding_steps: int,
        input_attention: Attention,
        add_action_bias: bool = True,
        dropout: float = 0.0,
        initializer: InitializerApplicator = InitializerApplicator(),
        regularizer: Optional[RegularizerApplicator] = None,
    ) -> None:
        super().__init__(vocab, regularizer)

        self._utterance_embedder = utterance_embedder
        self._encoder = encoder
        self._max_decoding_steps = max_decoding_steps
        self._add_action_bias = add_action_bias
        self._dropout = torch.nn.Dropout(p=dropout)

        self._exact_match = Average()
        self._valid_sql_query = Average()
        self._action_similarity = Average()
        self._denotation_accuracy = Average()

        # the padding value used by IndexField
        self._action_padding_index = -1
        num_actions = vocab.get_vocab_size("rule_labels")
        input_action_dim = action_embedding_dim
        if self._add_action_bias:
            input_action_dim += 1
        self._action_embedder = Embedding(
            num_embeddings=num_actions, embedding_dim=input_action_dim
        )
        self._output_action_embedder = Embedding(
            num_embeddings=num_actions, embedding_dim=action_embedding_dim
        )

        # This is what we pass as input in the first step of decoding, when we don't have a
        # previous action, or a previous utterance attention.
        self._first_action_embedding = torch.nn.Parameter(torch.FloatTensor(action_embedding_dim))
        self._first_attended_utterance = torch.nn.Parameter(
            torch.FloatTensor(encoder.get_output_dim())
        )
        torch.nn.init.normal_(self._first_action_embedding)
        torch.nn.init.normal_(self._first_attended_utterance)

        self._beam_search = decoder_beam_search
        self._decoder_trainer = MaximumMarginalLikelihood(beam_size=1)
        self._transition_function = BasicTransitionFunction(
            encoder_output_dim=self._encoder.get_output_dim(),
            action_embedding_dim=action_embedding_dim,
            input_attention=input_attention,
            add_action_bias=self._add_action_bias,
            dropout=dropout,
        )
        initializer(self)
    def setup_method(self):
        super().setup_method()
        self.initial_state = SimpleState(
            [0, 1], [[], []],
            [torch.Tensor([0.0]), torch.Tensor([0.0])], [0, 1])
        self.decoder_step = SimpleTransitionFunction()
        self.targets = torch.Tensor([[[2, 3, 4], [1, 3, 4], [1, 2, 4]],
                                     [[3, 4, 0], [2, 3, 4], [0, 0, 0]]])
        self.target_mask = torch.Tensor([[[1, 1, 1], [1, 1, 1], [1, 1, 1]],
                                         [[1, 1, 0], [1, 1, 1], [0, 0, 0]]])

        self.supervision = (self.targets, self.target_mask)
        # High beam size ensures exhaustive search.
        self.trainer = MaximumMarginalLikelihood()
 def __init__(
     self,
     vocab: Vocabulary,
     question_embedder: TextFieldEmbedder,
     action_embedding_dim: int,
     encoder: Seq2SeqEncoder,
     entity_encoder: Seq2VecEncoder,
     decoder_beam_search: BeamSearch,
     max_decoding_steps: int,
     attention: Attention,
     mixture_feedforward: FeedForward = None,
     add_action_bias: bool = True,
     training_beam_size: int = None,
     use_neighbor_similarity_for_linking: bool = False,
     dropout: float = 0.0,
     num_linking_features: int = 10,
     rule_namespace: str = "rule_labels",
 ) -> None:
     use_similarity = use_neighbor_similarity_for_linking
     super().__init__(
         vocab=vocab,
         question_embedder=question_embedder,
         action_embedding_dim=action_embedding_dim,
         encoder=encoder,
         entity_encoder=entity_encoder,
         max_decoding_steps=max_decoding_steps,
         add_action_bias=add_action_bias,
         use_neighbor_similarity_for_linking=use_similarity,
         dropout=dropout,
         num_linking_features=num_linking_features,
         rule_namespace=rule_namespace,
     )
     self._beam_search = decoder_beam_search
     self._decoder_trainer = MaximumMarginalLikelihood(training_beam_size)
     self._decoder_step = LinkingTransitionFunction(
         encoder_output_dim=self._encoder.get_output_dim(),
         action_embedding_dim=action_embedding_dim,
         input_attention=attention,
         add_action_bias=self._add_action_bias,
         mixture_feedforward=mixture_feedforward,
         dropout=dropout,
     )
示例#5
0
    def __init__(
        self,
        vocab: Vocabulary,
        utterance_embedder: TextFieldEmbedder,
        action_embedding_dim: int,
        encoder: Seq2SeqEncoder,
        decoder_beam_search: BeamSearch,
        max_decoding_steps: int,
        input_attention: Attention,
        add_action_bias: bool = True,
        training_beam_size: int = None,
        decoder_num_layers: int = 1,
        dropout: float = 0.0,
        rule_namespace: str = "rule_labels",
        database_file="/atis/atis.db",
    ) -> None:
        # Atis semantic parser init
        super().__init__(vocab)
        self._utterance_embedder = utterance_embedder
        self._encoder = encoder
        self._max_decoding_steps = max_decoding_steps
        self._add_action_bias = add_action_bias
        if dropout > 0:
            self._dropout = torch.nn.Dropout(p=dropout)
        else:
            self._dropout = lambda x: x
        self._rule_namespace = rule_namespace
        self._exact_match = Average()
        self._valid_sql_query = Average()
        self._action_similarity = Average()
        self._denotation_accuracy = Average()

        self._executor = SqlExecutor(database_file)
        self._action_padding_index = -1  # the padding value used by IndexField
        num_actions = vocab.get_vocab_size(self._rule_namespace)
        if self._add_action_bias:
            input_action_dim = action_embedding_dim + 1
        else:
            input_action_dim = action_embedding_dim
        self._action_embedder = Embedding(num_embeddings=num_actions,
                                          embedding_dim=input_action_dim)
        self._output_action_embedder = Embedding(
            num_embeddings=num_actions, embedding_dim=action_embedding_dim)

        # This is what we pass as input in the first step of decoding, when we don't have a
        # previous action, or a previous utterance attention.
        self._first_action_embedding = torch.nn.Parameter(
            torch.FloatTensor(action_embedding_dim))
        self._first_attended_utterance = torch.nn.Parameter(
            torch.FloatTensor(encoder.get_output_dim()))
        torch.nn.init.normal_(self._first_action_embedding)
        torch.nn.init.normal_(self._first_attended_utterance)

        self._num_entity_types = 2  # TODO(kevin): get this in a more principled way somehow?
        self._entity_type_decoder_embedding = Embedding(
            num_embeddings=self._num_entity_types,
            embedding_dim=action_embedding_dim)
        self._decoder_num_layers = decoder_num_layers

        self._beam_search = decoder_beam_search
        self._decoder_trainer = MaximumMarginalLikelihood(training_beam_size)
        self._transition_function = LinkingTransitionFunction(
            encoder_output_dim=self._encoder.get_output_dim(),
            action_embedding_dim=action_embedding_dim,
            input_attention=input_attention,
            add_action_bias=self._add_action_bias,
            dropout=dropout,
            num_layers=self._decoder_num_layers,
        )
    def __init__(self,
                 vocab: Vocabulary,
                 question_embedder: TextFieldEmbedder,
                 action_embedding_dim: int,
                 encoder: Seq2SeqEncoder,
                 decoder_beam_search: BeamSearch,
                 max_decoding_steps: int,
                 attention: Attention,
                 mixture_feedforward: FeedForward = None,
                 add_action_bias: bool = True,
                 dropout: float = 0.0,
                 num_linking_features: int = 0,
                 num_entity_bits: int = 0,
                 entity_bits_output: bool = True,
                 use_entities: bool = False,
                 denotation_only: bool = False,
                 # Deprecated parameter to load older models
                 entity_encoder: Seq2VecEncoder = None,  # pylint: disable=unused-argument
                 entity_similarity_mode: str = "dot_product",
                 rule_namespace: str = 'rule_labels') -> None:
        super(QuarelSemanticParser, self).__init__(vocab)
        self._question_embedder = question_embedder
        self._encoder = encoder
        self._beam_search = decoder_beam_search
        self._max_decoding_steps = max_decoding_steps
        if dropout > 0:
            self._dropout = torch.nn.Dropout(p=dropout)
        else:
            self._dropout = lambda x: x
        self._rule_namespace = rule_namespace
        self._denotation_accuracy = Average()
        self._action_sequence_accuracy = Average()
        self._has_logical_form = Average()

        self._embedding_dim = question_embedder.get_output_dim()
        self._use_entities = use_entities

        # Note: there's only one non-trivial entity type in QuaRel for now, so most of the
        # entity_type stuff is irrelevant
        self._num_entity_types = 4  # TODO(mattg): get this in a more principled way somehow?
        self._entity_type_encoder_embedding = Embedding(self._num_entity_types, self._embedding_dim)
        self._entity_type_decoder_embedding = Embedding(self._num_entity_types, action_embedding_dim)

        self._entity_similarity_layer = None
        self._entity_similarity_mode = entity_similarity_mode
        if self._entity_similarity_mode == "weighted_dot_product":
            self._entity_similarity_layer = \
                TimeDistributed(torch.nn.Linear(self._embedding_dim, 1, bias=False))
            # Center initial values around unweighted dot product
            self._entity_similarity_layer._module.weight.data += 1  # pylint: disable=protected-access
        elif self._entity_similarity_mode == "dot_product":
            pass
        else:
            raise ValueError("Invalid entity_similarity_mode: {}".format(self._entity_similarity_mode))

        if num_linking_features > 0:
            self._linking_params = torch.nn.Linear(num_linking_features, 1)
        else:
            self._linking_params = None

        self._decoder_trainer = MaximumMarginalLikelihood()

        self._encoder_output_dim = self._encoder.get_output_dim()
        if entity_bits_output:
            self._encoder_output_dim += num_entity_bits

        self._entity_bits_output = entity_bits_output

        self._debug_count = 10

        self._num_denotation_cats = 2  # Hardcoded for simplicity
        self._denotation_only = denotation_only
        if self._denotation_only:
            self._denotation_accuracy_cat = CategoricalAccuracy()
            self._denotation_classifier = torch.nn.Linear(self._encoder_output_dim,
                                                          self._num_denotation_cats)
            # Rest of init not needed for denotation only where no decoding to actions needed
            return

        self._action_padding_index = -1  # the padding value used by IndexField
        num_actions = vocab.get_vocab_size(self._rule_namespace)
        self._num_actions = num_actions
        self._action_embedder = Embedding(num_embeddings=num_actions, embedding_dim=action_embedding_dim)
        # We are tying the action embeddings used for input and output
        # self._output_action_embedder = Embedding(num_embeddings=num_actions, embedding_dim=action_embedding_dim)
        self._output_action_embedder = self._action_embedder  # tied weights
        self._add_action_bias = add_action_bias
        if self._add_action_bias:
            self._action_biases = Embedding(num_embeddings=num_actions, embedding_dim=1)

        # This is what we pass as input in the first step of decoding, when we don't have a
        # previous action, or a previous question attention.
        self._first_action_embedding = torch.nn.Parameter(torch.FloatTensor(action_embedding_dim))
        self._first_attended_question = torch.nn.Parameter(torch.FloatTensor(self._encoder_output_dim))
        torch.nn.init.normal_(self._first_action_embedding)
        torch.nn.init.normal_(self._first_attended_question)

        self._decoder_step = LinkingTransitionFunction(encoder_output_dim=self._encoder_output_dim,
                                                       action_embedding_dim=action_embedding_dim,
                                                       input_attention=attention,
                                                       add_action_bias=self._add_action_bias,
                                                       mixture_feedforward=mixture_feedforward,
                                                       dropout=dropout)