def test_sample_frequency(expected): dataset = EcephysSyncDataset() dataset.meta_data = {'ni_daq': {}} dataset.sample_frequency = expected assert dataset.sample_frequency == expected assert dataset.sample_frequency == dataset.meta_data['ni_daq']['counter_output_freq']
def test_extract_frame_times_from_photodiode(photodiode_times, vsyncs, cycle, expected): class TimesWrapper: def __call__(self, ignore, keys): if 'photodiode' in keys: return photodiode_times elif 'frames' in keys: return vsyncs dataset = EcephysSyncDataset() with mock.patch('allensdk.brain_observatory.ecephys.file_io.ecephys_sync_dataset.EcephysSyncDataset.get_edges', new_callable=TimesWrapper) as p: obtained = dataset.extract_frame_times_from_photodiode(photodiode_cycle=cycle) assert np.allclose(obtained, expected)
def test_extract_led_times(key, line_labels, led_vals): dataset = EcephysSyncDataset() dataset.line_labels = line_labels dataset.sample_frequency = 1000 with mock.patch('allensdk.brain_observatory.sync_dataset.Dataset.get_all_times', return_value=led_vals) as p: with mock.patch("allensdk.brain_observatory.sync_dataset.Dataset.get_bit_changes", return_value=np.ones_like(led_vals)) as q: obtained = dataset.extract_led_times(key) if key in line_labels: q.assert_called_once_with(0) else: q.assert_called_with(18) assert np.allclose(obtained, led_vals)
def build_stimulus_table(stimulus_pkl_path, sync_h5_path, frame_time_strategy, minimum_spontaneous_activity_duration, extract_const_params_from_repr, drop_const_params, maximum_expected_spontanous_activity_duration, stimulus_name_map, column_name_map, output_stimulus_table_path, output_frame_times_path, fail_on_negative_duration, **kwargs): stim_file = CamStimOnePickleStimFile.factory(stimulus_pkl_path) sync_dataset = EcephysSyncDataset.factory(sync_h5_path) frame_times = sync_dataset.extract_frame_times( strategy=frame_time_strategy) def seconds_to_frames(seconds): return \ (np.array(seconds) + stim_file.pre_blank_sec) * \ stim_file.frames_per_second minimum_spontaneous_activity_duration = ( minimum_spontaneous_activity_duration / stim_file.frames_per_second) stimulus_tabler = functools.partial( ephys_pre_spikes.build_stimuluswise_table, seconds_to_frames=seconds_to_frames, extract_const_params_from_repr=extract_const_params_from_repr, drop_const_params=drop_const_params, ) spon_tabler = functools.partial( ephys_pre_spikes.make_spontaneous_activity_tables, duration_threshold=minimum_spontaneous_activity_duration, ) stim_table_full = ephys_pre_spikes.create_stim_table( stim_file.stimuli, stimulus_tabler, spon_tabler) stim_table_full = ephys_pre_spikes.apply_frame_times( stim_table_full, frame_times, stim_file.frames_per_second, True) output_validation.validate_epoch_durations( stim_table_full, fail_on_negative_durations=fail_on_negative_duration) output_validation.validate_max_spontaneous_epoch_duration( stim_table_full, maximum_expected_spontanous_activity_duration) stim_table_full = naming_utilities.collapse_columns(stim_table_full) stim_table_full = naming_utilities.drop_empty_columns(stim_table_full) stim_table_full = naming_utilities.standardize_movie_numbers( stim_table_full) stim_table_full = naming_utilities.add_number_to_shuffled_movie( stim_table_full) stim_table_full = naming_utilities.map_stimulus_names( stim_table_full, stimulus_name_map) stim_table_full = naming_utilities.map_column_names( stim_table_full, column_name_map) stim_table_full.to_csv(output_stimulus_table_path, index=False) np.save(output_frame_times_path, frame_times, allow_pickle=False) return { "output_path": output_stimulus_table_path, "output_frame_times_path": output_frame_times_path, }
def build_opto_table(args): opto_file = pd.read_pickle(args['opto_pickle_path']) sync_file = EcephysSyncDataset.factory(args['sync_h5_path']) start_times = sync_file.extract_led_times() conditions = [str(item) for item in opto_file['opto_conditions']] levels = opto_file['opto_levels'] assert len(conditions) == len(levels) if len(start_times) > len(conditions): raise ValueError( f"there are {len(start_times) - len(conditions)} extra optotagging sync times!" ) optotagging_table = pd.DataFrame({ 'start_time': start_times, 'condition': conditions, 'level': levels }) optotagging_table = optotagging_table.sort_values(by='start_time', axis=0) stop_times = [] names = [] conditions = [] for ii, row in optotagging_table.iterrows(): condition = args["conditions"][row["condition"]] stop_times.append(row["start_time"] + condition["duration"]) names.append(condition["name"]) conditions.append(condition["condition"]) optotagging_table["stop_time"] = stop_times optotagging_table["stimulus_name"] = names optotagging_table["condition"] = conditions optotagging_table["duration"] = optotagging_table[ "stop_time"] - optotagging_table["start_time"] optotagging_table.to_csv(args['output_opto_table_path'], index=False) return {'output_opto_table_path': args['output_opto_table_path']}
def test_factory(): with mock.patch('allensdk.brain_observatory.sync_dataset.Dataset.load') as p: dataset = EcephysSyncDataset.factory('foo') p.assert_called_with('foo')