def load(cls, model_desc: dict): obj_layout = cls() obj_layout.features = model_desc['features'] obj_layout.formulas = decode(model_desc['formulas']) obj_layout.trained_time = model_desc['trained_time'] obj_layout.impl = cls.model_decode(model_desc['desc']) if 'fit_target' in model_desc: obj_layout.fit_target = decode(model_desc['fit_target']) else: obj_layout.fit_target = None return obj_layout
def load(cls, universe_desc: dict): name = universe_desc['name'] base_universe = universe_desc['base_universe'] exclude_universe = universe_desc['exclude_universe'] special_codes = universe_desc['special_codes'] filter_cond = decode(universe_desc['filter_cond']) return cls(name=name, base_universe=base_universe, exclude_universe=exclude_universe, special_codes=special_codes, filter_cond=filter_cond)
def load(cls, model_desc: dict): obj_layout = cls() obj_layout.features = model_desc['features'] obj_layout.trained_time = model_desc['trained_time'] if LooseVersion(sklearn_version) < LooseVersion(model_desc['sklearn_version']): alpha_logger.warning('Current sklearn version {0} is lower than the model version {1}. ' 'Loaded model may work incorrectly.'.format( sklearn_version, model_desc['sklearn_version'])) obj_layout.impl = decode(model_desc['desc']) return obj_layout
def decode_formula(str_repr): formula = decode(str_repr) return formula
def model_decode(cls, model_desc): return decode(model_desc)