def __init__(self, args): self.cfg = update_config(args.cfg) args.gpus = [int(i) for i in args.gpus.split(',') ] if torch.cuda.device_count() >= 1 else [-1] args.device = torch.device( "cuda:" + str(args.gpus[0]) if args.gpus[0] >= 0 else "cpu") args.detbatch = args.detbatch * len(args.gpus) args.posebatch = args.posebatch * len(args.gpus) args.tracking = (args.detector == 'tracker') self.mode, self.input_source = self.check_input(args) # Load pose model self.pose_model = builder.build_sppe(self.cfg.MODEL, preset_cfg=self.cfg.DATA_PRESET) print(f'Loading pose model from {args.checkpoint}...') self.pose_model.load_state_dict( torch.load(args.checkpoint, map_location=args.device)) if len(args.gpus) > 1: self.pose_model = torch.nn.DataParallel(self.pose_model, device_ids=args.gpus).to( args.device) else: self.pose_model.to(args.device) self.pose_model.eval() self.args = args
def __init__(self): self.device = try_gpu() self.cfg = update_config( 'configs/coco/resnet/256x192_res50_lr1e-3_1x.yaml') self.detector = get_detector({'detector': yolo}) self.detector.load_model() self.pose_net = builder.build_sppe(self.cfg.MODEL, preset_cfg=self.cfg.DATA_PRESET) self.pose_net.load_state_dict( torch.load('pretrained_models/fast_res50_256x192.pth', map_location=self.device)) pose_model.to(self.device)
def get_args(): parser = argparse.ArgumentParser(description='AlphaPose Single-Image Demo') parser.add_argument('--cfg', type=str, default="configs/coco/resnet/256x192_res50_lr1e-3_1x.yaml", help='experiment configure file name') parser.add_argument('--checkpoint', type=str, default="pretrained_models/fast_res50_256x192.pth", help='checkpoint file name') parser.add_argument('--detector', dest='detector', help='detector name', default="yolo") parser.add_argument('--image', dest='inputimg', help='image-name', default="") parser.add_argument('--save_img', default=False, action='store_true', help='save result as image') parser.add_argument('--vis', default=False, action='store_true', help='visualize image') parser.add_argument('--showbox', default=False, action='store_true', help='visualize human bbox') parser.add_argument('--profile', default=False, action='store_true', help='add speed profiling at screen output') parser.add_argument('--format', type=str, help='save in the format of cmu or coco or openpose, option: coco/cmu/open') parser.add_argument('--min_box_area', type=int, default=0, help='min box area to filter out') parser.add_argument('--eval', dest='eval', default=False, action='store_true', help='save the result json as coco format, using image index(int) instead of image name(str)') parser.add_argument('--gpus', type=str, dest='gpus', default="0", help='choose which cuda device to use by index and input comma to use multi gpus, e.g. 0,1,2,3. (input -1 for cpu only)') parser.add_argument('--flip', default=False, action='store_true', help='enable flip testing') parser.add_argument('--debug', default=False, action='store_true', help='print detail information') parser.add_argument('--vis_fast', dest='vis_fast', help='use fast rendering', action='store_true', default=False) """----------------------------- Tracking options -----------------------------""" parser.add_argument('--pose_flow', dest='pose_flow', help='track humans in video with PoseFlow', action='store_true', default=False) parser.add_argument('--pose_track', dest='pose_track', help='track humans in video with reid', action='store_true', default=False) args = parser.parse_args() cfg = update_config(args.cfg) args.gpus = [int(args.gpus[0])] if torch.cuda.device_count() >= 1 else [-1] args.device = torch.device("cuda:" + str(args.gpus[0]) if args.gpus[0] >= 0 else "cpu") args.tracking = args.pose_track or args.pose_flow or args.detector=='tracker' return args, cfg
def __init__(self, video, kp_score_treshold=.7): self.video = video self.kp_score_treshold = kp_score_treshold self.detector = "yolo" self.outputpath = os.path.dirname( self.video) + os.path.sep + "AlphaPose" + os.path.sep self.vis = False self.profile = False self.format = None # coco/cmu/open self.min_box_area = 0 self.detbatch = 1 # 5 self.posebatch = 10 # 80 self.eval = False self.gpus = [0] self.flip = False self.qsize = 64 # 1024 self.debug = False self.save_video = False self.vis_fast = False self.pose_flow = False self.pose_track = True self.sp = True self.save_img = False assert not (self.pose_flow and self.pose_track), "Pick only PoseFlow or Pose Track" self.device = torch.device("cuda:0") self.detbatch = self.detbatch * len(self.gpus) self.posebatch = self.posebatch * len(self.gpus) self.tracking = (self.pose_track or self.pose_flow or self.detector == 'tracker') self.cfg = "configs/coco/resnet/256x192_res50_lr1e-3_2x-dcn.yaml" self.checkpoint = "pretrained_models/fast_dcn_res50_256x192.pth" self.cfg = update_config(self.cfg) self.all_results = []
help='whether to save rendered video', default=True, action='store_true') parser.add_argument('--vis_fast', dest='vis_fast', help='use fast rendering', action='store_true', default=False) parser.add_argument('--pose_track', dest='pose_track', help='track humans in video', action='store_true', default=False) args = parser.parse_args() cfg = update_config(args.cfg) if platform.system() == 'Windows': args.sp = True args.gpus = [int(i) for i in args.gpus.split(',') ] if torch.cuda.device_count() >= 1 else [-1] args.device = torch.device("cuda:" + str(args.gpus[0]) if args.gpus[0] >= 0 else "cpu") args.detbatch = args.detbatch * len(args.gpus) args.posebatch = args.posebatch * len(args.gpus) args.tracking = (args.detector == 'tracker') if not args.sp: torch.multiprocessing.set_start_method('forkserver', force=True) torch.multiprocessing.set_sharing_strategy('file_system')
required=True, type=str) parser.add_argument('--gpus', help='gpus', type=str) parser.add_argument('--batch', help='validation batch size', type=int) parser.add_argument('--flip-test', default=False, dest='flip_test', help='flip test', action='store_true') parser.add_argument('--detector', dest='detector', help='detector name', default="yolo") opt = parser.parse_args() cfg = update_config(opt.cfg) gpus = [int(i) for i in opt.gpus.split(',')] opt.gpus = [gpus[0]] opt.device = torch.device("cuda:" + str(opt.gpus[0]) if opt.gpus[0] >= 0 else "cpu") def validate(m, heatmap_to_coord, batch_size=20): det_dataset = builder.build_dataset(cfg.DATASET.TEST, preset_cfg=cfg.DATA_PRESET, train=False, opt=opt) eval_joints = det_dataset.EVAL_JOINTS det_loader = torch.utils.data.DataLoader(det_dataset,
######################################## # Load in ReID Classification Parameter# ######################################## print('===> Start to constructing and loading ReID model', ['yellow', 'bold']) if opt.ReIDCfg != "": ReIDCfg.merge_from_file(opt.ReIDCfg) ReIDCfg.freeze() ReIDCfg_ = edict(ReIDCfg) ReIDCfg__ = TransferEasyDictToDICT(ReIDCfg_) writeyaml('./config/ReID/defaults.yaml', ReIDCfg__) ########################## # Load in Poser Parameter# ########################## Pose_opt = update_config(opt.Poser_cfg) Pose_opt_ = edict(Pose_opt) Pose_opt__ = TransferEasyDictToDICT(Pose_opt_) writeyaml('./config/alphapose/defaults.yaml', Pose_opt__) ################################## # Load in Number Predictor Number# ################################## Num_Pred_opt = Config.fromfile(opt.SvhnCfg) Num_Pred_opt_ = edict(Num_Pred_opt) Num_Pred_opt__ = TransferEasyDictToDICT(Num_Pred_opt_) writeyaml('./config/SVHN/defaults.yaml', Num_Pred_opt__)
''' def saveONNX(model, filepath, c, h, w): #输入数据形状 dummy_input = torch.zeros(1, c, h, w, device='cuda') dynamic_ax = {'input': {0: 'batch_size'}, 'output': {0: 'batch_size'}} torch.onnx.export(model, dummy_input, filepath, opset_version=10, input_names=["input"], output_names=["output"], dynamic_axes=dynamic_ax) cfg = update_config("configs/coco/resnet/256x192_res50_lr1e-3_1x.yaml") print(cfg) pose_model = builder.build_sppe(cfg.MODEL, preset_cfg=cfg.DATA_PRESET) pose_model.load_state_dict( torch.load("pretrained_models/fast_res50_256x192.pth")) pose_model.eval() print(pose_model) pose_model = pose_model.cuda() saveONNX(pose_model, filepath="onnxfile/fastpose_ret50_dynamic.onnx", c=3, h=256, w=192)
def __init__(self, args=None): if args is None: args = Namespace( # Pose config pose_cfg='configs/coco/resnet/256x192_res50_lr1e-3_1x.yaml', # Pose checkpoint pose_checkpoint='pretrained_models/fast_res50_256x192.pth', # GPUS gpus='0', # Detection thresh det_thresh=0.5, # Detection config det_cfg='mmDetection/gfl_x101_611.py', # Detection checkpoint det_checkpoint='mmDetection/weights.pth', # Show clothe color clothe_color=True, # show bboxes showbox=True ) self.pose_cfg = update_config(args.pose_cfg) # Device configuration args.gpus = [int(i) for i in args.gpus.split(',')] if torch.cuda.device_count() >= 1 else [-1] args.device = torch.device("cuda:" + str(args.gpus[0]) if args.gpus[0] >= 0 else "cpu") args.tracking = False args.pose_track = False # Copy args self.args = args # Preprocess transformation pose_dataset = builder.retrieve_dataset(self.pose_cfg.DATASET.TRAIN) self.transformation = SimpleTransform( pose_dataset, scale_factor=0, input_size=self.pose_cfg.DATA_PRESET.IMAGE_SIZE, output_size=self.pose_cfg.DATA_PRESET.HEATMAP_SIZE, rot=0, sigma=self.pose_cfg.DATA_PRESET.SIGMA, train=False, add_dpg=False, gpu_device=args.device) self.norm_type = self.pose_cfg.LOSS.get('NORM_TYPE', None) # Post process self.heatmap_to_coord = get_func_heatmap_to_coord(self.pose_cfg) # Load Detector Model self.det_model = init_detector(args.det_cfg, checkpoint=args.det_checkpoint, device=args.device) # Load pose model self.pose_model = builder.build_sppe(self.pose_cfg.MODEL, preset_cfg=self.pose_cfg.DATA_PRESET) print(f'Loading pose model from {args.pose_checkpoint}...') self.pose_model.load_state_dict(torch.load(args.pose_checkpoint, map_location=args.device)) self.pose_model.to(args.device) self.pose_model.eval()
import numpy as np import torch from alphapose.models import builder from alphapose.utils.config import update_config cfg_path = 'scripts/256x192_res50_lr1e-3_1x.yaml' weight = 'scripts/fast_res50_256x192.pth' model_path = 'alpha_pose_res50_256x192.pth' onnx_model_name = 'alphapose.onnx' if __name__ == "__main__": cfg = update_config(cfg_path) input_npz = np.load('pose.npz') input = input_npz['input'] input = torch.from_numpy(input) device = torch.device('cpu') pose_model = builder.build_sppe(cfg.MODEL, preset_cfg=cfg.DATA_PRESET) pose_model.load_state_dict(torch.load(weight, map_location=device)) torch.onnx.export( pose_model, # model being run input, # model input (or a tuple for multiple inputs) onnx_model_name, # where to save the model (can be a file or file-like object) export_params= True, # store the trained parameter weights inside the model file opset_version=10, # the ONNX version to export the model to do_constant_folding= True, # whether to execute constant folding for optimization input_names=['input'], # the model's input names output_names=['output'], # the model's output names ) print("Finish!")
def start(self): parser = argparse.ArgumentParser(description='AlphaPose Demo') parser.add_argument( '--cfg', type=str, required=False, help='experiment configure file name', default= "./AlphaPose/configs/coco/resnet/256x192_res50_lr1e-3_1x.yaml") parser.add_argument( '--checkpoint', type=str, required=False, help='checkpoint file name', default="./AlphaPose/pretrained_models/fast_res50_256x192.pth") parser.add_argument('--sp', default=False, action='store_true', help='Use single process for pytorch') parser.add_argument('--detector', dest='detector', help='detector name', default="yolo") parser.add_argument('--detfile', dest='detfile', help='detection result file', default="") parser.add_argument('--indir', dest='inputpath', help='image-directory', default="./media/img") parser.add_argument('--list', dest='inputlist', help='image-list', default="") parser.add_argument('--image', dest='inputimg', help='image-name', default="") parser.add_argument('--outdir', dest='outputpath', help='output-directory', default="./output") parser.add_argument('--save_img', default=True, action='store_true', help='save result as image') parser.add_argument('--vis', default=False, action='store_true', help='visualize image') parser.add_argument('--showbox', default=False, action='store_true', help='visualize human bbox') parser.add_argument('--profile', default=False, action='store_true', help='add speed profiling at screen output') parser.add_argument( '--format', type=str, help= 'save in the format of cmu or coco or openpose, option: coco/cmu/open', default="open") parser.add_argument('--min_box_area', type=int, default=0, help='min box area to filter out') parser.add_argument('--detbatch', type=int, default=1, help='detection batch size PER GPU') parser.add_argument('--posebatch', type=int, default=30, help='pose estimation maximum batch size PER GPU') parser.add_argument( '--eval', dest='eval', default=False, action='store_true', help= 'save the result json as coco format, using image index(int) instead of image name(str)' ) parser.add_argument( '--gpus', type=str, dest='gpus', default="0", help= 'choose which cuda device to use by index and input comma to use multi gpus, e.g. 0,1,2,3. (input -1 for cpu only)' ) parser.add_argument( '--qsize', type=int, dest='qsize', default=1024, help= 'the length of result buffer, where reducing it will lower requirement of cpu memory' ) parser.add_argument('--flip', default=False, action='store_true', help='enable flip testing') parser.add_argument('--debug', default=False, action='store_true', help='print detail information') """----------------------------- Video options -----------------------------""" parser.add_argument('--video', dest='video', help='video-name', default="") parser.add_argument('--webcam', dest='webcam', type=int, help='webcam number', default=-1) parser.add_argument('--save_video', dest='save_video', help='whether to save rendered video', default=False, action='store_true') parser.add_argument('--vis_fast', dest='vis_fast', help='use fast rendering', action='store_true', default=False) """----------------------------- Tracking options -----------------------------""" parser.add_argument('--pose_flow', dest='pose_flow', help='track humans in video with PoseFlow', action='store_true', default=False) parser.add_argument('--pose_track', dest='pose_track', help='track humans in video with reid', action='store_true', default=True) args = parser.parse_args() cfg = update_config(args.cfg) if platform.system() == 'Windows': args.sp = True args.gpus = [int(i) for i in args.gpus.split(',') ] if torch.cuda.device_count() >= 1 else [-1] args.device = torch.device( "cuda:" + str(args.gpus[0]) if args.gpus[0] >= 0 else "cpu") args.detbatch = args.detbatch * len(args.gpus) args.posebatch = args.posebatch * len(args.gpus) args.tracking = args.pose_track or args.pose_flow or args.detector == 'tracker' if not args.sp: torch.multiprocessing.set_start_method('forkserver', force=True) torch.multiprocessing.set_sharing_strategy('file_system') def check_input(): # for wecam if args.webcam != -1: args.detbatch = 1 return 'webcam', int(args.webcam) # for video if len(args.video): if os.path.isfile(args.video): videofile = args.video return 'video', videofile else: raise IOError( 'Error: --video must refer to a video file, not directory.' ) # for detection results if len(args.detfile): if os.path.isfile(args.detfile): detfile = args.detfile return 'detfile', detfile else: raise IOError( 'Error: --detfile must refer to a detection json file, not directory.' ) # for images if len(args.inputpath) or len(args.inputlist) or len( args.inputimg): inputpath = args.inputpath inputlist = args.inputlist inputimg = args.inputimg if len(inputlist): im_names = open(inputlist, 'r').readlines() elif len(inputpath) and inputpath != '/': for root, dirs, files in os.walk(inputpath): im_names = files im_names = natsort.natsorted(im_names) elif len(inputimg): args.inputpath = os.path.split(inputimg)[0] im_names = [os.path.split(inputimg)[1]] return 'image', im_names else: raise NotImplementedError def print_finish_info(): print('===========================> Finish Model Running.') if (args.save_img or args.save_video) and not args.vis_fast: print( '===========================> Rendering remaining images in the queue...' ) print( '===========================> If this step takes too long, you can enable the --vis_fast flag to use fast rendering (real-time).' ) def loop(): n = 0 while True: yield n n += 1 # dirList = os.listdir(args.inputpath) # inDir = args.inputpath # outDir = args.outputpath # for i in dirList : mode, input_source = check_input() if not os.path.exists(args.outputpath): os.makedirs(args.outputpath) # Load detection loader if mode == 'webcam': det_loader = WebCamDetectionLoader(input_source, get_detector(args), cfg, args) det_worker = det_loader.start() elif mode == 'detfile': det_loader = FileDetectionLoader(input_source, cfg, args) det_worker = det_loader.start() else: det_loader = DetectionLoader(input_source, get_detector(args), cfg, args, batchSize=args.detbatch, mode=mode, queueSize=args.qsize) det_worker = det_loader.start() # Load pose model pose_model = builder.build_sppe(cfg.MODEL, preset_cfg=cfg.DATA_PRESET) print(f'Loading pose model from {args.checkpoint}...') pose_model.load_state_dict( torch.load(args.checkpoint, map_location=args.device)) pose_dataset = builder.retrieve_dataset(cfg.DATASET.TRAIN) if args.pose_track: tracker = Tracker(tcfg, args) if len(args.gpus) > 1: pose_model = torch.nn.DataParallel(pose_model, device_ids=args.gpus).to( args.device) else: pose_model.to(args.device) pose_model.eval() runtime_profile = {'dt': [], 'pt': [], 'pn': []} # Init data writer queueSize = 2 if mode == 'webcam' else args.qsize if args.save_video and mode != 'image': from alphapose.utils.writer import DEFAULT_VIDEO_SAVE_OPT as video_save_opt if mode == 'video': video_save_opt['savepath'] = os.path.join( args.outputpath, 'AlphaPose_' + os.path.basename(input_source)) else: video_save_opt['savepath'] = os.path.join( args.outputpath, 'AlphaPose_webcam' + str(input_source) + '.mp4') video_save_opt.update(det_loader.videoinfo) writer = DataWriter(cfg, args, save_video=True, video_save_opt=video_save_opt, queueSize=queueSize).start() else: writer = DataWriter(cfg, args, save_video=False, queueSize=queueSize).start() if mode == 'webcam': print('Starting webcam demo, press Ctrl + C to terminate...') sys.stdout.flush() im_names_desc = tqdm(loop()) else: data_len = det_loader.length im_names_desc = tqdm(range(data_len), dynamic_ncols=True) batchSize = args.posebatch if args.flip: batchSize = int(batchSize / 2) try: self.percentage[2] = '관절정보 분석중' for i in range(len(im_names_desc)): start_time = getTime() # print(start_time) self.percentage[0] += 1 # with torch.no_grad(): (inps, orig_img, im_name, boxes, scores, ids, cropped_boxes) = det_loader.read() if orig_img is None: break if boxes is None or boxes.nelement() == 0: writer.save(None, None, None, None, None, orig_img, im_name) continue if args.profile: ckpt_time, det_time = getTime(start_time) runtime_profile['dt'].append(det_time) # Pose Estimation inps = inps.to(args.device) datalen = inps.size(0) leftover = 0 if (datalen) % batchSize: leftover = 1 num_batches = datalen // batchSize + leftover hm = [] for j in range(num_batches): inps_j = inps[j * batchSize:min((j + 1) * batchSize, datalen)] if args.flip: inps_j = torch.cat((inps_j, flip(inps_j))) hm_j = pose_model(inps_j) if args.flip: hm_j_flip = flip_heatmap(hm_j[int(len(hm_j) / 2):], pose_dataset.joint_pairs, shift=True) hm_j = (hm_j[0:int(len(hm_j) / 2)] + hm_j_flip) / 2 hm.append(hm_j) hm = torch.cat(hm) if args.profile: ckpt_time, pose_time = getTime(ckpt_time) runtime_profile['pt'].append(pose_time) if args.pose_track: boxes, scores, ids, hm, cropped_boxes = track( tracker, args, orig_img, inps, boxes, hm, cropped_boxes, im_name, scores) hm = hm.cpu() writer.save(boxes, scores, ids, hm, cropped_boxes, orig_img, im_name) if args.profile: ckpt_time, post_time = getTime(ckpt_time) runtime_profile['pn'].append(post_time) if args.profile: # TQDM im_names_desc.set_description( 'det time: {dt:.4f} | pose time: {pt:.4f} | post processing: {pn:.4f}' .format(dt=np.mean(runtime_profile['dt']), pt=np.mean(runtime_profile['pt']), pn=np.mean(runtime_profile['pn']))) print_finish_info() print("마무리 작업중...") while (writer.running()): time.sleep(1) print('===========================> Rendering remaining ' + str(writer.count()) + ' images in the queue...') writer.stop() det_loader.stop() print("작업종료") except Exception as e: print(repr(e)) print( 'An error as above occurs when processing the images, please check it' ) pass except KeyboardInterrupt: print_finish_info() # Thread won't be killed when press Ctrl+C if args.sp: det_loader.terminate() while (writer.running()): time.sleep(1) print('===========================> Rendering remaining ' + str(writer.count()) + ' images in the queue...') writer.stop() else: # subprocesses are killed, manually clear queues det_loader.terminate() writer.terminate() writer.clear_queues() det_loader.clear_queues()
if name.split('.')[-1] == 'jpg': img = cv2.imread(os.path.join(dir,name)) imgs.append(img) for index in range(1000): C_T_output_queue.put(True, (index, imgs, [])) if __name__ == '__main__': import torch.multiprocessing as mp from SoftWare_main import Pose_Estimate # 追踪器的参数 from opt import opt Pose_opt = update_config(opt.Poser_cfg) queueSize = 1024 cfg_file = '/datanew/hwb/FairMOT-master/alphapose/configs/coco/resnet/256x192_res50_lr1e-3_1x-simple.yaml' cfg = update_config(cfg_file) C_T_output_queue = mp.Queue(queueSize) # C_T : coordinate transfer. # 基于追踪数据,将追踪数据转换到其他的视角,并且生成相应的截图何ReID Features C_transfer = mp.Process(target=generate_img_sequences, args=(opt, C_T_output_queue)) C_transfer.daemon = True C_transfer.start() Pose_output_queue = mp.Queue(queueSize) # 基于追踪数据,将追踪数据转换到其他的视角,并且生成相应的截图何ReID Features P_estimate = mp.Process(target=Pose_Estimate, args=(opt, Pose_opt, C_T_output_queue, Pose_output_queue)) P_estimate.daemon = True P_estimate.start()