示例#1
0
    def __init__(self, args):
        self.cfg = update_config(args.cfg)

        args.gpus = [int(i) for i in args.gpus.split(',')
                     ] if torch.cuda.device_count() >= 1 else [-1]
        args.device = torch.device(
            "cuda:" + str(args.gpus[0]) if args.gpus[0] >= 0 else "cpu")
        args.detbatch = args.detbatch * len(args.gpus)
        args.posebatch = args.posebatch * len(args.gpus)
        args.tracking = (args.detector == 'tracker')

        self.mode, self.input_source = self.check_input(args)

        # Load pose model
        self.pose_model = builder.build_sppe(self.cfg.MODEL,
                                             preset_cfg=self.cfg.DATA_PRESET)

        print(f'Loading pose model from {args.checkpoint}...')
        self.pose_model.load_state_dict(
            torch.load(args.checkpoint, map_location=args.device))

        if len(args.gpus) > 1:
            self.pose_model = torch.nn.DataParallel(self.pose_model,
                                                    device_ids=args.gpus).to(
                                                        args.device)
        else:
            self.pose_model.to(args.device)
        self.pose_model.eval()

        self.args = args
    def __init__(self):
        self.device = try_gpu()
        self.cfg = update_config(
            'configs/coco/resnet/256x192_res50_lr1e-3_1x.yaml')

        self.detector = get_detector({'detector': yolo})
        self.detector.load_model()

        self.pose_net = builder.build_sppe(self.cfg.MODEL,
                                           preset_cfg=self.cfg.DATA_PRESET)
        self.pose_net.load_state_dict(
            torch.load('pretrained_models/fast_res50_256x192.pth',
                       map_location=self.device))

        pose_model.to(self.device)
示例#3
0
def get_args():
	parser = argparse.ArgumentParser(description='AlphaPose Single-Image Demo')
	parser.add_argument('--cfg', type=str, default="configs/coco/resnet/256x192_res50_lr1e-3_1x.yaml",
						help='experiment configure file name')
	parser.add_argument('--checkpoint', type=str, default="pretrained_models/fast_res50_256x192.pth",
						help='checkpoint file name')
	parser.add_argument('--detector', dest='detector',
						help='detector name', default="yolo")
	parser.add_argument('--image', dest='inputimg',
						help='image-name', default="")
	parser.add_argument('--save_img', default=False, action='store_true',
						help='save result as image')
	parser.add_argument('--vis', default=False, action='store_true',
						help='visualize image')
	parser.add_argument('--showbox', default=False, action='store_true',
						help='visualize human bbox')
	parser.add_argument('--profile', default=False, action='store_true',
						help='add speed profiling at screen output')
	parser.add_argument('--format', type=str,
						help='save in the format of cmu or coco or openpose, option: coco/cmu/open')
	parser.add_argument('--min_box_area', type=int, default=0,
						help='min box area to filter out')
	parser.add_argument('--eval', dest='eval', default=False, action='store_true',
						help='save the result json as coco format, using image index(int) instead of image name(str)')
	parser.add_argument('--gpus', type=str, dest='gpus', default="0",
						help='choose which cuda device to use by index and input comma to use multi gpus, e.g. 0,1,2,3. (input -1 for cpu only)')
	parser.add_argument('--flip', default=False, action='store_true',
						help='enable flip testing')
	parser.add_argument('--debug', default=False, action='store_true',
						help='print detail information')
	parser.add_argument('--vis_fast', dest='vis_fast',
						help='use fast rendering', action='store_true', default=False)
	"""----------------------------- Tracking options -----------------------------"""
	parser.add_argument('--pose_flow', dest='pose_flow',
						help='track humans in video with PoseFlow', action='store_true', default=False)
	parser.add_argument('--pose_track', dest='pose_track',
						help='track humans in video with reid', action='store_true', default=False)

	args = parser.parse_args()
	cfg = update_config(args.cfg)

	args.gpus = [int(args.gpus[0])] if torch.cuda.device_count() >= 1 else [-1]
	args.device = torch.device("cuda:" + str(args.gpus[0]) if args.gpus[0] >= 0 else "cpu")
	args.tracking = args.pose_track or args.pose_flow or args.detector=='tracker'

	return args, cfg
示例#4
0
    def __init__(self, video, kp_score_treshold=.7):

        self.video = video
        self.kp_score_treshold = kp_score_treshold

        self.detector = "yolo"
        self.outputpath = os.path.dirname(
            self.video) + os.path.sep + "AlphaPose" + os.path.sep
        self.vis = False
        self.profile = False
        self.format = None  # coco/cmu/open
        self.min_box_area = 0
        self.detbatch = 1  # 5
        self.posebatch = 10  # 80
        self.eval = False
        self.gpus = [0]
        self.flip = False
        self.qsize = 64  # 1024
        self.debug = False
        self.save_video = False
        self.vis_fast = False
        self.pose_flow = False
        self.pose_track = True
        self.sp = True
        self.save_img = False

        assert not (self.pose_flow
                    and self.pose_track), "Pick only PoseFlow or Pose Track"

        self.device = torch.device("cuda:0")
        self.detbatch = self.detbatch * len(self.gpus)
        self.posebatch = self.posebatch * len(self.gpus)
        self.tracking = (self.pose_track or self.pose_flow
                         or self.detector == 'tracker')

        self.cfg = "configs/coco/resnet/256x192_res50_lr1e-3_2x-dcn.yaml"
        self.checkpoint = "pretrained_models/fast_dcn_res50_256x192.pth"

        self.cfg = update_config(self.cfg)

        self.all_results = []
示例#5
0
文件: demo.py 项目: IMBINGO95/FairMOT
                    help='whether to save rendered video',
                    default=True,
                    action='store_true')
parser.add_argument('--vis_fast',
                    dest='vis_fast',
                    help='use fast rendering',
                    action='store_true',
                    default=False)
parser.add_argument('--pose_track',
                    dest='pose_track',
                    help='track humans in video',
                    action='store_true',
                    default=False)

args = parser.parse_args()
cfg = update_config(args.cfg)

if platform.system() == 'Windows':
    args.sp = True

args.gpus = [int(i) for i in args.gpus.split(',')
             ] if torch.cuda.device_count() >= 1 else [-1]
args.device = torch.device("cuda:" +
                           str(args.gpus[0]) if args.gpus[0] >= 0 else "cpu")
args.detbatch = args.detbatch * len(args.gpus)
args.posebatch = args.posebatch * len(args.gpus)
args.tracking = (args.detector == 'tracker')

if not args.sp:
    torch.multiprocessing.set_start_method('forkserver', force=True)
    torch.multiprocessing.set_sharing_strategy('file_system')
示例#6
0
文件: validate.py 项目: yechanp/pose
                    required=True,
                    type=str)
parser.add_argument('--gpus', help='gpus', type=str)
parser.add_argument('--batch', help='validation batch size', type=int)
parser.add_argument('--flip-test',
                    default=False,
                    dest='flip_test',
                    help='flip test',
                    action='store_true')
parser.add_argument('--detector',
                    dest='detector',
                    help='detector name',
                    default="yolo")

opt = parser.parse_args()
cfg = update_config(opt.cfg)

gpus = [int(i) for i in opt.gpus.split(',')]
opt.gpus = [gpus[0]]
opt.device = torch.device("cuda:" +
                          str(opt.gpus[0]) if opt.gpus[0] >= 0 else "cpu")


def validate(m, heatmap_to_coord, batch_size=20):
    det_dataset = builder.build_dataset(cfg.DATASET.TEST,
                                        preset_cfg=cfg.DATA_PRESET,
                                        train=False,
                                        opt=opt)
    eval_joints = det_dataset.EVAL_JOINTS

    det_loader = torch.utils.data.DataLoader(det_dataset,
示例#7
0
    ########################################
    # Load in ReID Classification Parameter#
    ########################################
    print('===> Start to constructing and loading ReID model',
          ['yellow', 'bold'])
    if opt.ReIDCfg != "":
        ReIDCfg.merge_from_file(opt.ReIDCfg)
    ReIDCfg.freeze()

    ReIDCfg_ = edict(ReIDCfg)
    ReIDCfg__ = TransferEasyDictToDICT(ReIDCfg_)
    writeyaml('./config/ReID/defaults.yaml', ReIDCfg__)

    ##########################
    # Load in Poser Parameter#
    ##########################
    Pose_opt = update_config(opt.Poser_cfg)

    Pose_opt_ = edict(Pose_opt)
    Pose_opt__ = TransferEasyDictToDICT(Pose_opt_)
    writeyaml('./config/alphapose/defaults.yaml', Pose_opt__)

    ##################################
    # Load in Number Predictor Number#
    ##################################
    Num_Pred_opt = Config.fromfile(opt.SvhnCfg)
    Num_Pred_opt_ = edict(Num_Pred_opt)
    Num_Pred_opt__ = TransferEasyDictToDICT(Num_Pred_opt_)
    writeyaml('./config/SVHN/defaults.yaml', Num_Pred_opt__)
示例#8
0
'''


def saveONNX(model, filepath, c, h, w):
    #输入数据形状
    dummy_input = torch.zeros(1, c, h, w, device='cuda')
    dynamic_ax = {'input': {0: 'batch_size'}, 'output': {0: 'batch_size'}}
    torch.onnx.export(model,
                      dummy_input,
                      filepath,
                      opset_version=10,
                      input_names=["input"],
                      output_names=["output"],
                      dynamic_axes=dynamic_ax)


cfg = update_config("configs/coco/resnet/256x192_res50_lr1e-3_1x.yaml")
print(cfg)
pose_model = builder.build_sppe(cfg.MODEL, preset_cfg=cfg.DATA_PRESET)
pose_model.load_state_dict(
    torch.load("pretrained_models/fast_res50_256x192.pth"))
pose_model.eval()
print(pose_model)
pose_model = pose_model.cuda()

saveONNX(pose_model,
         filepath="onnxfile/fastpose_ret50_dynamic.onnx",
         c=3,
         h=256,
         w=192)
示例#9
0
文件: api.py 项目: elb3k/AlphaPose
    def __init__(self, args=None):

        if args is None:

            args = Namespace(
                # Pose config
                pose_cfg='configs/coco/resnet/256x192_res50_lr1e-3_1x.yaml',
                # Pose checkpoint
                pose_checkpoint='pretrained_models/fast_res50_256x192.pth',
                # GPUS
                gpus='0',
                # Detection thresh
                det_thresh=0.5,
                # Detection config
                det_cfg='mmDetection/gfl_x101_611.py',
                # Detection checkpoint
                det_checkpoint='mmDetection/weights.pth',
                # Show clothe color
                clothe_color=True,
                # show bboxes
                showbox=True

            )
    
        
        self.pose_cfg = update_config(args.pose_cfg)
        

        # Device configuration
        args.gpus = [int(i) for i in args.gpus.split(',')] if torch.cuda.device_count() >= 1 else [-1]
        args.device = torch.device("cuda:" + str(args.gpus[0]) if args.gpus[0] >= 0 else "cpu")
        args.tracking = False
        args.pose_track = False

        # Copy args
        self.args = args

        # Preprocess transformation
        pose_dataset = builder.retrieve_dataset(self.pose_cfg.DATASET.TRAIN)
        self.transformation = SimpleTransform(
            pose_dataset, scale_factor=0,
            input_size=self.pose_cfg.DATA_PRESET.IMAGE_SIZE,
            output_size=self.pose_cfg.DATA_PRESET.HEATMAP_SIZE,
            rot=0, sigma=self.pose_cfg.DATA_PRESET.SIGMA,
            train=False, add_dpg=False, gpu_device=args.device)

        self.norm_type = self.pose_cfg.LOSS.get('NORM_TYPE', None)

        # Post process        
        self.heatmap_to_coord = get_func_heatmap_to_coord(self.pose_cfg)


        # Load Detector Model
        self.det_model = init_detector(args.det_cfg, checkpoint=args.det_checkpoint, device=args.device)

        # Load pose model
        self.pose_model = builder.build_sppe(self.pose_cfg.MODEL, preset_cfg=self.pose_cfg.DATA_PRESET)

        print(f'Loading pose model from {args.pose_checkpoint}...')
        self.pose_model.load_state_dict(torch.load(args.pose_checkpoint, map_location=args.device))

        self.pose_model.to(args.device)
        self.pose_model.eval()
示例#10
0
import numpy as np
import torch
from alphapose.models import builder
from alphapose.utils.config import update_config

cfg_path = 'scripts/256x192_res50_lr1e-3_1x.yaml'
weight = 'scripts/fast_res50_256x192.pth'
model_path = 'alpha_pose_res50_256x192.pth'
onnx_model_name = 'alphapose.onnx'

if __name__ == "__main__":
    cfg = update_config(cfg_path)
    input_npz = np.load('pose.npz')
    input = input_npz['input']
    input = torch.from_numpy(input)
    device = torch.device('cpu')
    pose_model = builder.build_sppe(cfg.MODEL, preset_cfg=cfg.DATA_PRESET)
    pose_model.load_state_dict(torch.load(weight, map_location=device))
    torch.onnx.export(
        pose_model,  # model being run
        input,  # model input (or a tuple for multiple inputs)
        onnx_model_name,  # where to save the model (can be a file or file-like object)
        export_params=
        True,  # store the trained parameter weights inside the model file
        opset_version=10,  # the ONNX version to export the model to
        do_constant_folding=
        True,  # whether to execute constant folding for optimization
        input_names=['input'],  # the model's input names
        output_names=['output'],  # the model's output names
    )
    print("Finish!")
示例#11
0
    def start(self):
        parser = argparse.ArgumentParser(description='AlphaPose Demo')
        parser.add_argument(
            '--cfg',
            type=str,
            required=False,
            help='experiment configure file name',
            default=
            "./AlphaPose/configs/coco/resnet/256x192_res50_lr1e-3_1x.yaml")
        parser.add_argument(
            '--checkpoint',
            type=str,
            required=False,
            help='checkpoint file name',
            default="./AlphaPose/pretrained_models/fast_res50_256x192.pth")
        parser.add_argument('--sp',
                            default=False,
                            action='store_true',
                            help='Use single process for pytorch')
        parser.add_argument('--detector',
                            dest='detector',
                            help='detector name',
                            default="yolo")
        parser.add_argument('--detfile',
                            dest='detfile',
                            help='detection result file',
                            default="")
        parser.add_argument('--indir',
                            dest='inputpath',
                            help='image-directory',
                            default="./media/img")
        parser.add_argument('--list',
                            dest='inputlist',
                            help='image-list',
                            default="")
        parser.add_argument('--image',
                            dest='inputimg',
                            help='image-name',
                            default="")
        parser.add_argument('--outdir',
                            dest='outputpath',
                            help='output-directory',
                            default="./output")
        parser.add_argument('--save_img',
                            default=True,
                            action='store_true',
                            help='save result as image')
        parser.add_argument('--vis',
                            default=False,
                            action='store_true',
                            help='visualize image')
        parser.add_argument('--showbox',
                            default=False,
                            action='store_true',
                            help='visualize human bbox')
        parser.add_argument('--profile',
                            default=False,
                            action='store_true',
                            help='add speed profiling at screen output')
        parser.add_argument(
            '--format',
            type=str,
            help=
            'save in the format of cmu or coco or openpose, option: coco/cmu/open',
            default="open")
        parser.add_argument('--min_box_area',
                            type=int,
                            default=0,
                            help='min box area to filter out')
        parser.add_argument('--detbatch',
                            type=int,
                            default=1,
                            help='detection batch size PER GPU')
        parser.add_argument('--posebatch',
                            type=int,
                            default=30,
                            help='pose estimation maximum batch size PER GPU')
        parser.add_argument(
            '--eval',
            dest='eval',
            default=False,
            action='store_true',
            help=
            'save the result json as coco format, using image index(int) instead of image name(str)'
        )
        parser.add_argument(
            '--gpus',
            type=str,
            dest='gpus',
            default="0",
            help=
            'choose which cuda device to use by index and input comma to use multi gpus, e.g. 0,1,2,3. (input -1 for cpu only)'
        )
        parser.add_argument(
            '--qsize',
            type=int,
            dest='qsize',
            default=1024,
            help=
            'the length of result buffer, where reducing it will lower requirement of cpu memory'
        )
        parser.add_argument('--flip',
                            default=False,
                            action='store_true',
                            help='enable flip testing')
        parser.add_argument('--debug',
                            default=False,
                            action='store_true',
                            help='print detail information')
        """----------------------------- Video options -----------------------------"""
        parser.add_argument('--video',
                            dest='video',
                            help='video-name',
                            default="")
        parser.add_argument('--webcam',
                            dest='webcam',
                            type=int,
                            help='webcam number',
                            default=-1)
        parser.add_argument('--save_video',
                            dest='save_video',
                            help='whether to save rendered video',
                            default=False,
                            action='store_true')
        parser.add_argument('--vis_fast',
                            dest='vis_fast',
                            help='use fast rendering',
                            action='store_true',
                            default=False)
        """----------------------------- Tracking options -----------------------------"""
        parser.add_argument('--pose_flow',
                            dest='pose_flow',
                            help='track humans in video with PoseFlow',
                            action='store_true',
                            default=False)
        parser.add_argument('--pose_track',
                            dest='pose_track',
                            help='track humans in video with reid',
                            action='store_true',
                            default=True)

        args = parser.parse_args()
        cfg = update_config(args.cfg)

        if platform.system() == 'Windows':
            args.sp = True

        args.gpus = [int(i) for i in args.gpus.split(',')
                     ] if torch.cuda.device_count() >= 1 else [-1]
        args.device = torch.device(
            "cuda:" + str(args.gpus[0]) if args.gpus[0] >= 0 else "cpu")
        args.detbatch = args.detbatch * len(args.gpus)
        args.posebatch = args.posebatch * len(args.gpus)
        args.tracking = args.pose_track or args.pose_flow or args.detector == 'tracker'

        if not args.sp:
            torch.multiprocessing.set_start_method('forkserver', force=True)
            torch.multiprocessing.set_sharing_strategy('file_system')

        def check_input():
            # for wecam
            if args.webcam != -1:
                args.detbatch = 1
                return 'webcam', int(args.webcam)

            # for video
            if len(args.video):
                if os.path.isfile(args.video):
                    videofile = args.video
                    return 'video', videofile
                else:
                    raise IOError(
                        'Error: --video must refer to a video file, not directory.'
                    )

            # for detection results
            if len(args.detfile):
                if os.path.isfile(args.detfile):
                    detfile = args.detfile
                    return 'detfile', detfile
                else:
                    raise IOError(
                        'Error: --detfile must refer to a detection json file, not directory.'
                    )

            # for images
            if len(args.inputpath) or len(args.inputlist) or len(
                    args.inputimg):
                inputpath = args.inputpath
                inputlist = args.inputlist
                inputimg = args.inputimg

                if len(inputlist):
                    im_names = open(inputlist, 'r').readlines()
                elif len(inputpath) and inputpath != '/':
                    for root, dirs, files in os.walk(inputpath):
                        im_names = files
                    im_names = natsort.natsorted(im_names)
                elif len(inputimg):
                    args.inputpath = os.path.split(inputimg)[0]
                    im_names = [os.path.split(inputimg)[1]]

                return 'image', im_names

            else:
                raise NotImplementedError

        def print_finish_info():
            print('===========================> Finish Model Running.')
            if (args.save_img or args.save_video) and not args.vis_fast:
                print(
                    '===========================> Rendering remaining images in the queue...'
                )
                print(
                    '===========================> If this step takes too long, you can enable the --vis_fast flag to use fast rendering (real-time).'
                )

        def loop():
            n = 0
            while True:
                yield n
                n += 1

        # dirList = os.listdir(args.inputpath)
        # inDir = args.inputpath
        # outDir = args.outputpath
        # for i in dirList :
        mode, input_source = check_input()
        if not os.path.exists(args.outputpath):
            os.makedirs(args.outputpath)

        # Load detection loader
        if mode == 'webcam':
            det_loader = WebCamDetectionLoader(input_source,
                                               get_detector(args), cfg, args)
            det_worker = det_loader.start()
        elif mode == 'detfile':
            det_loader = FileDetectionLoader(input_source, cfg, args)
            det_worker = det_loader.start()
        else:
            det_loader = DetectionLoader(input_source,
                                         get_detector(args),
                                         cfg,
                                         args,
                                         batchSize=args.detbatch,
                                         mode=mode,
                                         queueSize=args.qsize)
            det_worker = det_loader.start()

        # Load pose model
        pose_model = builder.build_sppe(cfg.MODEL, preset_cfg=cfg.DATA_PRESET)

        print(f'Loading pose model from {args.checkpoint}...')
        pose_model.load_state_dict(
            torch.load(args.checkpoint, map_location=args.device))
        pose_dataset = builder.retrieve_dataset(cfg.DATASET.TRAIN)
        if args.pose_track:
            tracker = Tracker(tcfg, args)
        if len(args.gpus) > 1:
            pose_model = torch.nn.DataParallel(pose_model,
                                               device_ids=args.gpus).to(
                                                   args.device)
        else:
            pose_model.to(args.device)
        pose_model.eval()

        runtime_profile = {'dt': [], 'pt': [], 'pn': []}

        # Init data writer
        queueSize = 2 if mode == 'webcam' else args.qsize
        if args.save_video and mode != 'image':
            from alphapose.utils.writer import DEFAULT_VIDEO_SAVE_OPT as video_save_opt
            if mode == 'video':
                video_save_opt['savepath'] = os.path.join(
                    args.outputpath,
                    'AlphaPose_' + os.path.basename(input_source))
            else:
                video_save_opt['savepath'] = os.path.join(
                    args.outputpath,
                    'AlphaPose_webcam' + str(input_source) + '.mp4')
            video_save_opt.update(det_loader.videoinfo)
            writer = DataWriter(cfg,
                                args,
                                save_video=True,
                                video_save_opt=video_save_opt,
                                queueSize=queueSize).start()
        else:
            writer = DataWriter(cfg,
                                args,
                                save_video=False,
                                queueSize=queueSize).start()

        if mode == 'webcam':
            print('Starting webcam demo, press Ctrl + C to terminate...')
            sys.stdout.flush()
            im_names_desc = tqdm(loop())
        else:
            data_len = det_loader.length
            im_names_desc = tqdm(range(data_len), dynamic_ncols=True)

        batchSize = args.posebatch
        if args.flip:
            batchSize = int(batchSize / 2)
        try:
            self.percentage[2] = '관절정보 분석중'
            for i in range(len(im_names_desc)):
                start_time = getTime()
                # print(start_time)
                self.percentage[0] += 1
                #
                with torch.no_grad():
                    (inps, orig_img, im_name, boxes, scores, ids,
                     cropped_boxes) = det_loader.read()
                    if orig_img is None:
                        break
                    if boxes is None or boxes.nelement() == 0:
                        writer.save(None, None, None, None, None, orig_img,
                                    im_name)
                        continue
                    if args.profile:
                        ckpt_time, det_time = getTime(start_time)
                        runtime_profile['dt'].append(det_time)
                    # Pose Estimation
                    inps = inps.to(args.device)
                    datalen = inps.size(0)
                    leftover = 0
                    if (datalen) % batchSize:
                        leftover = 1
                    num_batches = datalen // batchSize + leftover
                    hm = []
                    for j in range(num_batches):
                        inps_j = inps[j * batchSize:min((j + 1) *
                                                        batchSize, datalen)]
                        if args.flip:
                            inps_j = torch.cat((inps_j, flip(inps_j)))
                        hm_j = pose_model(inps_j)
                        if args.flip:
                            hm_j_flip = flip_heatmap(hm_j[int(len(hm_j) / 2):],
                                                     pose_dataset.joint_pairs,
                                                     shift=True)
                            hm_j = (hm_j[0:int(len(hm_j) / 2)] + hm_j_flip) / 2
                        hm.append(hm_j)
                    hm = torch.cat(hm)
                    if args.profile:
                        ckpt_time, pose_time = getTime(ckpt_time)
                        runtime_profile['pt'].append(pose_time)
                    if args.pose_track:
                        boxes, scores, ids, hm, cropped_boxes = track(
                            tracker, args, orig_img, inps, boxes, hm,
                            cropped_boxes, im_name, scores)
                    hm = hm.cpu()
                    writer.save(boxes, scores, ids, hm, cropped_boxes,
                                orig_img, im_name)
                    if args.profile:
                        ckpt_time, post_time = getTime(ckpt_time)
                        runtime_profile['pn'].append(post_time)

                if args.profile:
                    # TQDM
                    im_names_desc.set_description(
                        'det time: {dt:.4f}  | pose time: {pt:.4f} | post processing: {pn:.4f}'
                        .format(dt=np.mean(runtime_profile['dt']),
                                pt=np.mean(runtime_profile['pt']),
                                pn=np.mean(runtime_profile['pn'])))
            print_finish_info()
            print("마무리 작업중...")
            while (writer.running()):
                time.sleep(1)
                print('===========================> Rendering remaining ' +
                      str(writer.count()) + ' images in the queue...')
            writer.stop()
            det_loader.stop()
            print("작업종료")
        except Exception as e:
            print(repr(e))
            print(
                'An error as above occurs when processing the images, please check it'
            )
            pass
        except KeyboardInterrupt:
            print_finish_info()
            # Thread won't be killed when press Ctrl+C
            if args.sp:
                det_loader.terminate()
                while (writer.running()):
                    time.sleep(1)
                    print('===========================> Rendering remaining ' +
                          str(writer.count()) + ' images in the queue...')
                writer.stop()
            else:
                # subprocesses are killed, manually clear queues

                det_loader.terminate()
                writer.terminate()
                writer.clear_queues()
                det_loader.clear_queues()
示例#12
0
        if name.split('.')[-1] == 'jpg':
            img = cv2.imread(os.path.join(dir,name))
            imgs.append(img)

    for index in range(1000):
        C_T_output_queue.put(True, (index, imgs, []))


if __name__ == '__main__':
    import torch.multiprocessing as mp

    from SoftWare_main import Pose_Estimate

    # 追踪器的参数
    from opt import opt
    Pose_opt = update_config(opt.Poser_cfg)

    queueSize = 1024
    cfg_file = '/datanew/hwb/FairMOT-master/alphapose/configs/coco/resnet/256x192_res50_lr1e-3_1x-simple.yaml'
    cfg = update_config(cfg_file)

    C_T_output_queue = mp.Queue(queueSize) # C_T : coordinate transfer.
    # 基于追踪数据,将追踪数据转换到其他的视角,并且生成相应的截图何ReID Features
    C_transfer = mp.Process(target=generate_img_sequences, args=(opt, C_T_output_queue))
    C_transfer.daemon = True
    C_transfer.start()
    Pose_output_queue = mp.Queue(queueSize)
    # 基于追踪数据,将追踪数据转换到其他的视角,并且生成相应的截图何ReID Features
    P_estimate = mp.Process(target=Pose_Estimate, args=(opt, Pose_opt, C_T_output_queue, Pose_output_queue))
    P_estimate.daemon = True
    P_estimate.start()