import altair as alt import pandas as pd penguins_df = pd.read_csv('data/penguins.csv') # The base plot base = alt.Chart(penguins_df).mark_bar().encode( alt.Y('species', title=None), alt.X('count()', title='Number of penguins')) base # Create added text text = alt.Chart(____).____(____, ____).encode(alt.____('species'), alt.____('count()'), alt.____(____)) # Set up the title and subtitle formatting penguin_title = alt.____(____, ____, ____, subtitleColor=____) formatted_plot = (base + text).configure_view(____=0).properties( height=200, width=300, title=penguin_title) formatted_plot
import altair as alt import pandas as pd from vega_datasets import data # The data sources gapminder_df = pd.read_csv('data/gapminder_codes.csv', parse_dates=['year']) world_df = alt.____(data.world_110m.url, ____) # The map pop_dense_plot = (alt.Chart(____).____().encode( alt.____('____:Q', ____=alt.Scale(scheme=____, domainMid=____), title='Population Density (people/Km^2)') ).____(lookup='id', from_=alt.____(____, 'id', [____]))).properties( width=580, height=340, title='Country population densities are higher in Europe and parts of Asia' ).____(____=80, translate=[290, 240]).configure_legend(orient='bottom') pop_dense_plot
import altair as alt import pandas as pd penguins_df = pd.read_csv('data/penguins.csv') # Obtain all the labels of the columns with dtype object in a list # Name the list cat_cols ____ = ____ # Next create histogram pairplots for every categorical column categorical_plots = alt.Chart(____).____().encode( alt.X(____, type=____), alt.Y(____, type=____), alt.____(____, title=None), alt.____(____, title=None)).____(____=____, ____=____).resolve_scale(____='independent', ____='independent') ____
import altair as alt import pandas as pd temps_df = pd.read_csv('data/temperature.csv', parse_dates=['date']) temp_plot = alt.Chart(temps_df).____(____).encode( alt.X('date', ____), alt.Y('total_rain_mm', ____), alt.____(____, ____, ____)).properties(title=____) temp_plot
import altair as alt import pandas as pd penguins_df = pd.read_csv('data/penguins.csv') colour_plot = alt.Chart(penguins_df).mark_point(____).encode( alt.X('flipper_length_mm', scale=____, title=____), alt.Y('body_mass_g', scale=____, title=____), alt.____('species', ____, ____), alt.____('species')).properties(____) colour_plot
import altair as alt import pandas as pd from vega_datasets import data # The data sources world_df = alt.____(data.world_110m.url, ____) # The map world_plot = alt.Chart(____).____().____(type=____).properties( width=580, height=400, title='World Map') world_plot
import altair as alt import pandas as pd penguins_df = pd.read_csv('data/penguins.csv') slider = alt.____(name=.____, max=max(penguins_df.____)) select_rating = alt.____( fields=[____], bind=____) slider_scatter = (alt.Chart(penguins_df).mark_circle().encode( alt.X('culmen_length_mm', title='Culmen length (mm)', scale=alt.Scale(zero=False)), alt.Y('culmen_depth_mm', title='Culmen depth (mm)', scale=alt.Scale(zero=False)), color='species', opacity=alt.condition(____ < ____, alt.value(0.7), alt.value(0.05))) .add_selection(____)) slider_scatter
import altair as alt import pandas as pd pokemon_df = pd.read_csv('data/pokemon.csv') pokemon_circleplot = alt.____(____).____().____( alt.X(____, ____), alt.Y(____, ____), alt.____(____, title='Number of Pokemon'), alt.____(____, title='Number of Pokemon')).____( title='Number of Pokemon types per generation') ____