示例#1
0
    def objective(chain, x):
        T = chain.Time_to_exp / 252
        Rf = chain.Rf

        c_total = len(chain.Call_Strike)
        p_total = len(chain.Put_Strike)

        w = x[0]
        F1 = x[1]
        sigma1 = x[2]
        F2 = x[3]
        sigma2 = x[4]

        c_market = (chain.Call_Ask + chain.Call_Bid) / 2
        p_market = (chain.Put_Ask + chain.Put_Bid) / 2

        S1 = F1 * math.exp(-1 * Rf * T)
        S2 = F2 * math.exp(-1 * Rf * T)
        c_the =np.array([w*(american_option('c',S1,chain.Call_Dummy_Strike[i],T,Rf,sigma1)[0])\
                + (1-w)*(american_option('c',S2,chain.Call_Dummy_Strike[i],T,Rf,sigma2)[0])\
                for i in range(c_total)])

        p_the = np.array([w*(american_option('p',S1,chain.Put_Dummy_Strike[i],T,Rf,sigma1)[0])\
                + (1-w)*(american_option('p',S2,chain.Put_Dummy_Strike[i],T,Rf,sigma2)[0])\
                for i in range(p_total)])

        c_sse = np.sum((c_market - c_the)**2)
        p_sse = np.sum((p_market - p_the)**2)

        return c_sse + p_sse
    def __init__(self, asset, final_dataset):
        self.Name = asset
        self.lot_size = 100

        setattr(self, "Time_to_exp", days_to_expiry)

        asset_df = final_dataset[final_dataset['Group'] == asset]

        asset_df["Dummy_Strike"] = asset_df.loc[:, "Strike"]

        filtered = asset_df.groupby('Strike')['Strike'].filter(
            lambda x: len(x) == 2)
        not_common = asset_df[~asset_df['Strike'].isin(filtered)]

        records = not_common.to_dict('records')

        to_add = list()

        for record in records:
            new = record.copy()
            if record["Option_type"] == "CALL":
                for keys, value in new.items():
                    if type(value) == str:
                        if keys in ["Symbol", "Description"]:
                            new[keys] = "Dummy"
                        if keys == "Option_type":
                            new[keys] = "PUT"
                    else:
                        if keys in ["Bid", "Ask"]:
                            option_type = 'p'
                            fs = new['stock_Last']
                            x = new['Strike']
                            t = self.Time_to_exp / 252
                            r = rf_value
                            v = new['Impl Vol']
                            new[keys] = american_option(
                                option_type, fs, x, t, r, v)[0]
                        if keys[:5] != "stock" and (keys not in [
                                "Strike", "Dummy_Strike", "Ask", "Bid",
                                "Impl Vol"
                        ]):
                            new[keys] = 0

                new["Strike"] = -1000000

            else:
                for keys, value in new.items():
                    if type(value) == str:
                        if keys in ["Symbol", "Description"]:
                            new[keys] = "Dummy"
                        if keys == "Option_type":
                            new[keys] = "CALL"
                    else:
                        if keys in ["Bid", "Ask"]:
                            option_type = 'p'
                            fs = new['stock_Last']
                            x = new['Strike']
                            t = self.Time_to_exp / 252
                            r = rf_value
                            v = new['Impl Vol']
                            new[keys] = american_option(
                                option_type, fs, x, t, r, v)[0]
                        if keys[:5] != "stock" and (keys not in [
                                "Strike", "Dummy_Strike", "Ask", "Bid",
                                "Impl Vol"
                        ]):
                            new[keys] = 0

                new["Strike"] = 1000000

            to_add.append(new)

        df_dummy_options = pd.DataFrame(to_add)

        asset_df = asset_df.append(df_dummy_options)

        asset_df = asset_df.sort_values(by=['Option_type', 'Dummy_Strike'])

        greeks = ["Delta", "Gamma", "Theta", "Vega", "Rho"]
        for greek in greeks:
            setattr(self, "Var_" + greek, np.std(asset_df[greek].values))

        self.call_df = asset_df[asset_df['Option_type'] == "CALL"]
        self.put_df = asset_df[asset_df['Option_type'] == "PUT"]

        cols = [
            "Bid", "Ask", "Last", "Delta", "Gamma", "Theta", "Vega", "Rho",
            "Impl Vol", "Strike", "Dummy_Strike"
        ]

        for col in cols:
            setattr(self, "Call_" + col, self.call_df[col].values)
            setattr(self, "Put_" + col, self.put_df[col].values)

        setattr(self, "Call_total", len(self.Call_Strike))
        setattr(self, "Put_total", len(self.Put_Strike))

        setattr(self, "Stock_Last", asset_df["stock_Last"].iloc[0])

        setattr(self, "Description", asset_df["stock_Description"].iloc[0])

        setattr(self, "Stock_Volt", asset_df["stock_Impl_Vol"].iloc[0])

        std = self.Stock_Last * (self.Stock_Volt *
                                 ((self.Time_to_exp / 252)**0.5))
        self.sigma = std

        self.Rf = rf_value

        vol_day = (self.Stock_Volt) * math.sqrt(1 / 252)

        ln_S_0 = math.log(self.Stock_Last)
        rt = self.Rf * (self.Time_to_exp / 252)
        s_term = -0.5 * (vol_day**2) * (self.Time_to_exp)

        mu_n = ln_S_0 + rt + s_term
        sigma_n = vol_day * math.sqrt(self.Time_to_exp)

        s = sigma_n

        scale = math.exp(mu_n)

        self.lognormal_s = s
        self.lognormal_scale = scale

        S = self.Stock_Last

        #self.S_space = np.linspace(self.Stock_Last - 4*self.sigma, self.Stock_Last + 4*self.sigma, 20)
        self.S_space = np.arange(S - 0.5 * S, S + 0.5 * S, 0.1)
        self.S_density = stats.lognorm.pdf(self.S_space, s, loc=0, scale=scale)

        ## for optimization
        variables = [
            "Ask", "Bid", "Strike", "Delta", "Gamma", "Theta", "Vega", "Rho"
        ]
        for variable in variables:
            cal_cont = getattr(self, "Call_" + variable)
            put_cont = getattr(self, "Put_" + variable)
            array = np.hstack((cal_cont[:, np.newaxis], put_cont[:,
                                                                 np.newaxis]))
            setattr(self, variable + "_List",
                    [[array[i, j] for j in range(array.shape[1])]
                     for i in range(array.shape[0])])
from american_option_pricing import american_option

option_type = 'c'
fs = 98.95
x = 104
t = 9 / 252
r = 0.103 / 100
b = 0
v = 0.2793

ans = american_option(option_type, fs, x, t, r, v)
#actual = 5.75
#print(actual)
print((0.62 + 0.35) / 2)
print(ans[0])