def plotpoints_knn_fm_fires(): fm = amf.ForwardMapping(amf.regression.kNN, [55], 3) data = amf.data.load('../data/fires.txt') subset = amf.data.random_subsets(data, [400])[0] fm.train(subset) for x in misc.xfrange(45.0, 75.0, .1): print x, fm.predict((x,))[0]
def plotpoints_knn_fm_fires(): data = amf.data.load('../data/fires.txt') subset = amf.data.random_subsets(data, [200])[0] for k in range(5, 30, 5): fm = amf.ForwardMapping(amf.regression.kNN, [k], 1) fm.train(subset) out = open('../data/plots/fires_knn_graph/k=%d' % k, 'w') for x in misc.xfrange(45.0, 75.0, .1): print >> out, x, fm.predict((x,))[0] gpscript = open('../data/plots/fires_knn_graph/plot.gp' ,'w') print >> gpscript, """
def plotpoints_loess_fm_fires(): data = amf.data.load('../data/fires.txt') subset = amf.data.random_subsets(data, [200])[0] window = .5 for i in range(3): fm = amf.ForwardMapping(amf.regression.LOESS, [window, 1], 1) fm.train(subset) out = open('../data/plots/fires_loess_graph/window=%.1f' % window, 'w') for x in misc.xfrange(45.0, 75.0, .1): print >> out, x, fm.predict((x,))[0] window += .5 gpscript = open('../data/plots/fires_loess_graph/plot.gp' ,'w') print >> gpscript, """