def setUp(self): TestBase.setUp(self) self.correlation_rule = CorrelationRule('Correlation', 1, 1.2, max_artefacts_a_for_single_b=1, artefact_match_parameters=[ ('/model/sequence1/Value2Value', '/model/sequence2/Value3Value')]) self.a_class_selector = EventClassSelector('Selector1', [self.correlation_rule], None) self.b_class_selector = EventClassSelector('Selector2', None, [self.correlation_rule]) self.rules = [] self.rules.append(Rules.PathExistsMatchRule('/model/sequence1/Value2Key', self.a_class_selector)) self.rules.append(Rules.PathExistsMatchRule('/model/sequence2/Value3Key', self.b_class_selector))
def build_analysis_pipeline(analysis_context): """ Define the function to create pipeline for parsing the log data. It has also to define an AtomizerFactory to instruct aminer how to process incoming data streams to create log atoms from them. """ # Build the parsing model: service_children_disk_report = [ FixedDataModelElement( 'Space', b' Current Disk Data is: Filesystem Type Size Used Avail Use%' ), DelimitedDataModelElement('Data', b'%'), AnyByteDataModelElement('Rest') ] service_children_login_details = [ FixedDataModelElement('User', b'User '), DelimitedDataModelElement('Username', b' '), FixedWordlistDataModelElement('Status', [b' logged in', b' logged out']), OptionalMatchModelElement( 'PastTime', SequenceModelElement('Time', [ FixedDataModelElement('Blank', b' '), DecimalIntegerValueModelElement('Minutes'), FixedDataModelElement('Ago', b' minutes ago.') ])) ] service_children_cron_job = [ DateTimeModelElement('DTM', b'%Y-%m-%d %H:%M:%S'), FixedDataModelElement('UNameSpace1', b' '), DelimitedDataModelElement('UName', b' '), FixedDataModelElement('UNameSpace2', b' '), DelimitedDataModelElement('User', b' '), FixedDataModelElement('Cron', b' cron['), DecimalIntegerValueModelElement('JobNumber'), FixedDataModelElement('Details', b']: Job `cron.daily` started.') ] service_children_random_time = [ FixedDataModelElement('Space', b'Random: '), DecimalIntegerValueModelElement('Random') ] service_children_sensors = [ SequenceModelElement('CPUTemp', [ FixedDataModelElement('FixedTemp', b'CPU Temp: '), DecimalIntegerValueModelElement('Temp'), FixedDataModelElement('Degrees', b'\xc2\xb0C') ]), FixedDataModelElement('Space1', b', '), SequenceModelElement('CPUWorkload', [ FixedDataModelElement('FixedWorkload', b'CPUWorkload: '), DecimalIntegerValueModelElement('Workload'), FixedDataModelElement('Percent', b'%') ]), FixedDataModelElement('Space2', b', '), DateTimeModelElement('DTM', b'%Y-%m-%d %H:%M:%S') ] service_children_user_ip_address = [ FixedDataModelElement('User', b'User '), DelimitedDataModelElement('Username', b' '), FixedDataModelElement('Action', b' changed IP address to '), IpAddressDataModelElement('IP') ] service_children_cron_job_announcement = [ DateTimeModelElement('DTM', b'%Y-%m-%d %H:%M:%S'), FixedDataModelElement('Space', b' '), DelimitedDataModelElement('UName', b' '), FixedDataModelElement('Cron', b' cron['), DecimalIntegerValueModelElement('JobNumber'), FixedDataModelElement('Run', b']: Will run job `'), FixedWordlistDataModelElement( 'CronType', [b'cron.daily', b'cron.hourly', b'cron.monthly', b'cron.weekly']), FixedDataModelElement('StartTime', b'\' in 5 min.') ] service_children_cron_job_execution = [ DateTimeModelElement('DTM', b'%Y-%m-%d %H:%M:%S'), FixedDataModelElement('Space1', b' '), DelimitedDataModelElement('UName', b' '), FixedDataModelElement('Cron', b' cron['), DecimalIntegerValueModelElement('JobNumber'), FixedDataModelElement('Job', b']: Job `'), FixedWordlistDataModelElement( 'CronType', [b'cron.daily', b'cron.hourly', b'cron.monthly', b'cron.weekly']), FixedDataModelElement('Started', b'\' started') ] parsing_model = FirstMatchModelElement('model', [ SequenceModelElement('CronAnnouncement', service_children_cron_job_announcement), SequenceModelElement('CronExecution', service_children_cron_job_execution), SequenceModelElement('DailyCron', service_children_cron_job), SequenceModelElement('DiskReport', service_children_disk_report), SequenceModelElement('LoginDetails', service_children_login_details), DecimalIntegerValueModelElement('Random'), SequenceModelElement('RandomTime', service_children_random_time), SequenceModelElement('Sensors', service_children_sensors), SequenceModelElement('IPAddresses', service_children_user_ip_address) ]) # Some generic imports. from aminer.analysis import AtomFilters # Create all global handler lists here and append the real handlers later on. # Use this filter to distribute all atoms to the analysis handlers. atom_filters = AtomFilters.SubhandlerFilter(None) analysis_context.register_component(atom_filters, component_name="AtomFilter") from aminer.analysis.TimestampCorrectionFilters import SimpleMonotonicTimestampAdjust simple_monotonic_timestamp_adjust = SimpleMonotonicTimestampAdjust( [atom_filters]) analysis_context.register_component( simple_monotonic_timestamp_adjust, component_name="SimpleMonotonicTimestampAdjust") from aminer.events.StreamPrinterEventHandler import StreamPrinterEventHandler stream_printer_event_handler = StreamPrinterEventHandler( analysis_context) # skipcq: BAN-B108 from aminer.events.Utils import VolatileLogarithmicBackoffEventHistory volatile_logarithmic_backoff_event_history = VolatileLogarithmicBackoffEventHistory( 100) anomaly_event_handlers = [ stream_printer_event_handler, volatile_logarithmic_backoff_event_history ] analysis_context.register_component( volatile_logarithmic_backoff_event_history, component_name="VolatileLogarithmicBackoffEventHistory") # Now define the AtomizerFactory using the model. A simple line based one is usually sufficient. from aminer.input.SimpleByteStreamLineAtomizerFactory import SimpleByteStreamLineAtomizerFactory analysis_context.atomizer_factory = SimpleByteStreamLineAtomizerFactory( parsing_model, [simple_monotonic_timestamp_adjust], anomaly_event_handlers) # Just report all unparsed atoms to the event handlers. from aminer.analysis.UnparsedAtomHandlers import SimpleUnparsedAtomHandler simple_unparsed_atom_handler = SimpleUnparsedAtomHandler( anomaly_event_handlers) atom_filters.add_handler(simple_unparsed_atom_handler, stop_when_handled_flag=True) analysis_context.register_component(simple_unparsed_atom_handler, component_name="UnparsedHandler") from aminer.analysis.TimestampsUnsortedDetector import TimestampsUnsortedDetector timestamps_unsorted_detector = TimestampsUnsortedDetector( analysis_context.aminer_config, anomaly_event_handlers) atom_filters.add_handler(timestamps_unsorted_detector) analysis_context.register_component( timestamps_unsorted_detector, component_name="TimestampsUnsortedDetector") from aminer.analysis import Rules from aminer.analysis.AllowlistViolationDetector import AllowlistViolationDetector allowlist_rules = [ Rules.OrMatchRule([ Rules.AndMatchRule([ Rules.PathExistsMatchRule( '/model/LoginDetails/PastTime/Time/Minutes'), Rules.NegationMatchRule( Rules.ValueMatchRule('/model/LoginDetails/Username', b'root')) ]), Rules.AndMatchRule([ Rules.NegationMatchRule( Rules.PathExistsMatchRule( '/model/LoginDetails/PastTime/Time/Minutes')), Rules.PathExistsMatchRule('/model/LoginDetails') ]), Rules.NegationMatchRule( Rules.PathExistsMatchRule('/model/LoginDetails')) ]) ] # This rule list should trigger, when the line does not look like: User root (logged in, logged out) # or User 'username' (logged in, logged out) x minutes ago. allowlist_violation_detector = AllowlistViolationDetector( analysis_context.aminer_config, allowlist_rules, anomaly_event_handlers) analysis_context.register_component(allowlist_violation_detector, component_name="Allowlist") atom_filters.add_handler(allowlist_violation_detector) from aminer.analysis.ParserCount import ParserCount parser_count = ParserCount(analysis_context.aminer_config, None, anomaly_event_handlers, 10) analysis_context.register_component(parser_count, component_name="ParserCount") atom_filters.add_handler(parser_count) from aminer.analysis.EventCorrelationDetector import EventCorrelationDetector ecd = EventCorrelationDetector(analysis_context.aminer_config, anomaly_event_handlers, check_rules_flag=True, hypothesis_max_delta_time=1.0, auto_include_flag=True) analysis_context.register_component( ecd, component_name="EventCorrelationDetector") atom_filters.add_handler(ecd) from aminer.analysis.NewMatchPathDetector import NewMatchPathDetector new_match_path_detector = NewMatchPathDetector( analysis_context.aminer_config, anomaly_event_handlers, auto_include_flag=True) analysis_context.register_component(new_match_path_detector, component_name="NewMatchPath") atom_filters.add_handler(new_match_path_detector) def tuple_transformation_function(match_value_list): """Only allow output of the EnhancedNewMatchPathValueComboDetector after every 10000th element.""" extra_data = enhanced_new_match_path_value_combo_detector.known_values_dict.get( tuple(match_value_list)) if extra_data is not None: mod = 10000 if (extra_data[2] + 1) % mod == 0: enhanced_new_match_path_value_combo_detector.auto_include_flag = False else: enhanced_new_match_path_value_combo_detector.auto_include_flag = True return match_value_list from aminer.analysis.EnhancedNewMatchPathValueComboDetector import EnhancedNewMatchPathValueComboDetector enhanced_new_match_path_value_combo_detector = EnhancedNewMatchPathValueComboDetector( analysis_context.aminer_config, ['/model/DailyCron/UName', '/model/DailyCron/JobNumber'], anomaly_event_handlers, auto_include_flag=False, tuple_transformation_function=tuple_transformation_function) analysis_context.register_component( enhanced_new_match_path_value_combo_detector, component_name="EnhancedNewValueCombo") atom_filters.add_handler(enhanced_new_match_path_value_combo_detector) from aminer.analysis.HistogramAnalysis import HistogramAnalysis, LinearNumericBinDefinition, ModuloTimeBinDefinition, \ PathDependentHistogramAnalysis modulo_time_bin_definition = ModuloTimeBinDefinition( 86400, 3600, 0, 1, 24, True) linear_numeric_bin_definition = LinearNumericBinDefinition(50, 5, 20, True) histogram_analysis = HistogramAnalysis( analysis_context.aminer_config, [('/model/RandomTime/Random', modulo_time_bin_definition), ('/model/Random', linear_numeric_bin_definition)], 10, anomaly_event_handlers) analysis_context.register_component(histogram_analysis, component_name="HistogramAnalysis") atom_filters.add_handler(histogram_analysis) path_dependent_histogram_analysis = PathDependentHistogramAnalysis( analysis_context.aminer_config, '/model/RandomTime', modulo_time_bin_definition, 10, anomaly_event_handlers) analysis_context.register_component( path_dependent_histogram_analysis, component_name="PathDependentHistogramAnalysis") atom_filters.add_handler(path_dependent_histogram_analysis) from aminer.analysis.MatchValueAverageChangeDetector import MatchValueAverageChangeDetector match_value_average_change_detector = MatchValueAverageChangeDetector( analysis_context.aminer_config, anomaly_event_handlers, None, ['/model/Random'], 100, 10) analysis_context.register_component( match_value_average_change_detector, component_name="MatchValueAverageChange") atom_filters.add_handler(match_value_average_change_detector) import sys from aminer.analysis.MatchValueStreamWriter import MatchValueStreamWriter match_value_stream_writer = MatchValueStreamWriter(sys.stdout, [ '/model/Sensors/CPUTemp', '/model/Sensors/CPUWorkload', '/model/Sensors/DTM' ], b';', b'') analysis_context.register_component( match_value_stream_writer, component_name="MatchValueStreamWriter") atom_filters.add_handler(match_value_stream_writer) from aminer.analysis.NewMatchPathValueComboDetector import NewMatchPathValueComboDetector new_match_path_value_combo_detector = NewMatchPathValueComboDetector( analysis_context.aminer_config, ['/model/IPAddresses/Username', '/model/IPAddresses/IP'], anomaly_event_handlers, auto_include_flag=False) analysis_context.register_component( new_match_path_value_combo_detector, component_name="NewMatchPathValueCombo") atom_filters.add_handler(new_match_path_value_combo_detector) from aminer.analysis.NewMatchIdValueComboDetector import NewMatchIdValueComboDetector new_match_id_value_combo_detector = NewMatchIdValueComboDetector( analysis_context.aminer_config, ['/model/type/path/name', '/model/type/syscall/syscall'], anomaly_event_handlers, id_path_list=['/model/type/path/id', '/model/type/syscall/id'], min_allowed_time_diff=5, auto_include_flag=True, allow_missing_values_flag=True, output_log_line=True) analysis_context.register_component( new_match_id_value_combo_detector, component_name="NewMatchIdValueComboDetector") atom_filters.add_handler(new_match_id_value_combo_detector) from aminer.analysis.NewMatchPathValueDetector import NewMatchPathValueDetector new_match_path_value_detector = NewMatchPathValueDetector( analysis_context.aminer_config, ['/model/DailyCron/Job Number', '/model/IPAddresses/Username'], anomaly_event_handlers, auto_include_flag=False) analysis_context.register_component(new_match_path_value_detector, component_name="NewMatchPathValue") atom_filters.add_handler(new_match_path_value_detector) from aminer.analysis.MissingMatchPathValueDetector import MissingMatchPathValueDetector missing_match_path_value_detector = MissingMatchPathValueDetector( analysis_context.aminer_config, ['/model/DiskReport/Space'], anomaly_event_handlers, auto_include_flag=False, default_interval=2, realert_interval=5) analysis_context.register_component(missing_match_path_value_detector, component_name="MissingMatch") atom_filters.add_handler(missing_match_path_value_detector) from aminer.analysis.TimeCorrelationDetector import TimeCorrelationDetector time_correlation_detector = TimeCorrelationDetector( analysis_context.aminer_config, anomaly_event_handlers, 2, min_rule_attributes=1, max_rule_attributes=5, record_count_before_event=70000, output_log_line=True) analysis_context.register_component( time_correlation_detector, component_name="TimeCorrelationDetector") atom_filters.add_handler(time_correlation_detector) from aminer.analysis.TimeCorrelationViolationDetector import TimeCorrelationViolationDetector, CorrelationRule, EventClassSelector cron_job_announcement = CorrelationRule( 'CronJobAnnouncement', 5, 6, max_artefacts_a_for_single_b=1, artefact_match_parameters=[('/model/CronAnnouncement/JobNumber', '/model/CronExecution/JobNumber')]) a_class_selector = EventClassSelector('Announcement', [cron_job_announcement], None) b_class_selector = EventClassSelector('Execution', None, [cron_job_announcement]) rules = [ Rules.PathExistsMatchRule('/model/CronAnnouncement/Run', a_class_selector), Rules.PathExistsMatchRule('/model/CronExecution/Job', b_class_selector) ] time_correlation_violation_detector = TimeCorrelationViolationDetector( analysis_context.aminer_config, rules, anomaly_event_handlers) analysis_context.register_component( time_correlation_violation_detector, component_name="TimeCorrelationViolationDetector") atom_filters.add_handler(time_correlation_violation_detector) from aminer.events.DefaultMailNotificationEventHandler import DefaultMailNotificationEventHandler if DefaultMailNotificationEventHandler.CONFIG_KEY_MAIL_TARGET_ADDRESS in analysis_context.aminer_config.config_properties: mail_notification_handler = DefaultMailNotificationEventHandler( analysis_context) analysis_context.register_component(mail_notification_handler, component_name="MailHandler") anomaly_event_handlers.append(mail_notification_handler)
class TimeCorrelationViolationDetectorTest(TestBase): """Unittests for the TimeCorrelationViolationDetector.""" _expected_string = '%s Correlation rule "%s" violated\nTimeCorrelationViolationDetector: "%s" (%d lines)\n FAIL: ' _expected_string_too_early = _expected_string + 'B-Event for "%s" (%s) was found too early!\n\n\n' _expected_string_too_late = _expected_string + 'B-Event for "%s" (%s) was not found in time!\n\n\n' _expected_string_different_attributes = _expected_string + '"%s" (%s) %d is not equal %d\n\n\n' model = '/model' datetime_format_string = '%Y-%m-%d %H:%M:%S' service_children1 = [ FixedDataModelElement('Value1Key', b'Value1: '), FixedDataModelElement('Value1Value', b'fixed Value1'), FixedDataModelElement('Value2Key', b', Value2: '), DecimalIntegerValueModelElement('Value2Value'), FixedDataModelElement('Value3Key', b', Value3: '), FixedDataModelElement('Value3Value', b'fixed Value3'), FixedDataModelElement('Value4Key', b', Value4: '), FixedDataModelElement('Value4Value', b'fixed Value4') ] service_children2 = [ FixedDataModelElement('Value1Key', b'Value1: '), FixedDataModelElement('Value1Value', b'fixed Value1'), FixedDataModelElement('Value2Key', b', Value2: '), FixedDataModelElement('Value2Value', b'fixed Value2'), FixedDataModelElement('Value3Key', b', Value3: '), DecimalIntegerValueModelElement('Value3Value'), FixedDataModelElement('Value4Key', b', Value4: '), FixedDataModelElement('Value4Value', b'fixed Value4') ] match_context1 = MatchContext( b'Value1: fixed Value1, Value2: 22500, Value3: fixed Value3, Value4: fixed Value4' ) match_context2 = MatchContext( b'Value1: fixed Value1, Value2: fixed Value2, Value3: 22500, Value4: fixed Value4' ) match_context2_different = MatchContext( b'Value1: fixed Value1, Value2: fixed Value2, Value3: 22501, Value4: fixed Value4' ) seq1 = SequenceModelElement('sequence1', service_children1) seq2 = SequenceModelElement('sequence2', service_children2) match_element1 = seq1.get_match_element(model, match_context1) match_element2 = seq2.get_match_element(model, match_context2) match_element2_different = seq2.get_match_element( model, match_context2_different) def setUp(self): """Set up the rules for the TimeCorrelationViolationDetector.""" TestBase.setUp(self) self.correlation_rule = CorrelationRule( 'Correlation', 1, 1.2, max_artefacts_a_for_single_b=1, artefact_match_parameters=[('/model/sequence1/Value2Value', '/model/sequence2/Value3Value')]) self.a_class_selector = EventClassSelector('Selector1', [self.correlation_rule], None) self.b_class_selector = EventClassSelector('Selector2', None, [self.correlation_rule]) self.rules = [] self.rules.append( Rules.PathExistsMatchRule('/model/sequence1/Value2Key', self.a_class_selector)) self.rules.append( Rules.PathExistsMatchRule('/model/sequence2/Value3Key', self.b_class_selector)) def test1_check_status_ok(self): """ In this test case the status is OK after receiving the expected data and no error message is returned. The output of the do_timer-method is also tested in this test case. """ description = "Test1TimeCorrelationViolationDetector" time_correlation_violation_detector = TimeCorrelationViolationDetector( self.analysis_context.aminer_config, self.rules, [self.stream_printer_event_handler]) self.analysis_context.register_component( time_correlation_violation_detector, component_name=description) log_atom1 = LogAtom(self.match_context1.match_data, ParserMatch(self.match_element1), time.time(), self) time_correlation_violation_detector.receive_atom(log_atom1) log_atom2 = LogAtom(self.match_context2.match_data, ParserMatch(self.match_element2), time.time() + 1, self) time_correlation_violation_detector.receive_atom(log_atom2) time_correlation_violation_detector.do_timer(time.time()) self.assertEqual(self.output_stream.getvalue(), "") def test2_check_status_not_found_error(self): """ In this test case the second log line is not found and an appropriate error message is expected from the check_status-method. The output of the do_timer-method is also tested in this test case. """ description = "Test2TimeCorrelationViolationDetector" time_correlation_violation_detector = TimeCorrelationViolationDetector( self.analysis_context.aminer_config, self.rules, [self.stream_printer_event_handler]) self.analysis_context.register_component( time_correlation_violation_detector, component_name=description) t = time.time() log_atom1 = LogAtom(self.match_context1.match_data, ParserMatch(self.match_element1), t, self) time_correlation_violation_detector.receive_atom(log_atom1) r = self.correlation_rule.check_status(t + 2) self.assertEqual( r[0], 'FAIL: B-Event for "%s" (%s) was not found in time!\n' % (self.match_element1.get_match_string().decode(), self.a_class_selector.action_id)) def test3_check_status_before_expected_timespan(self): """ In this test case the second log line is found too early. An appropriate error message is expected from the check_status-method. The output of the do_timer-method is also tested in this test case. """ description = "Test3TimeCorrelationViolationDetector" time_correlation_violation_detector = TimeCorrelationViolationDetector( self.analysis_context.aminer_config, self.rules, [self.stream_printer_event_handler]) self.analysis_context.register_component( time_correlation_violation_detector, component_name=description) t = time.time() log_atom1 = LogAtom(self.match_context1.match_data, ParserMatch(self.match_element1), t, self) time_correlation_violation_detector.receive_atom(log_atom1) log_atom2 = LogAtom(self.match_context2.match_data, ParserMatch(self.match_element2), time.time(), self) time_correlation_violation_detector.receive_atom(log_atom2) time_correlation_violation_detector.do_timer(time.time()) self.assertEqual( self.output_stream.getvalue(), self._expected_string_too_early % (datetime.fromtimestamp(t).strftime( self.datetime_format_string), self.correlation_rule.rule_id, description, 1, self.match_element1.get_match_string().decode(), self.a_class_selector.action_id)) def test4_check_status_after_expected_timespan(self): """ In this test case the second log line is found too late. An appropriate error message is expected from the check_status-method. The output of the do_timer-method is also tested in this test case. """ description = "Test4TimeCorrelationViolationDetector" time_correlation_violation_detector = TimeCorrelationViolationDetector( self.analysis_context.aminer_config, self.rules, [self.stream_printer_event_handler]) self.analysis_context.register_component( time_correlation_violation_detector, component_name=description) t = time.time() log_atom1 = LogAtom(self.match_context1.match_data, ParserMatch(self.match_element1), t, self) time_correlation_violation_detector.receive_atom(log_atom1) log_atom2 = LogAtom(self.match_context2.match_data, ParserMatch(self.match_element2), t + 5, self) time_correlation_violation_detector.receive_atom(log_atom2) time_correlation_violation_detector.do_timer(time.time()) self.assertEqual( self.output_stream.getvalue(), self._expected_string_too_late % (datetime.fromtimestamp(t).strftime( self.datetime_format_string), self.correlation_rule.rule_id, description, 1, self.match_element1.get_match_string().decode(), self.a_class_selector.action_id)) def test5_check_status_attributes_not_matching(self): """ In this test case the second log line has different attributes than expected. An appropriate error message is expected from the check_status-method. The output of the do_timer-method is also tested in this test case. """ description = "Test5TimeCorrelationViolationDetector" time_correlation_violation_detector = TimeCorrelationViolationDetector( self.analysis_context.aminer_config, self.rules, [self.stream_printer_event_handler]) self.analysis_context.register_component( time_correlation_violation_detector, component_name=description) t = time.time() log_atom1 = LogAtom(self.match_context1.match_data, ParserMatch(self.match_element1), t, self) time_correlation_violation_detector.receive_atom(log_atom1) log_atom2 = LogAtom(self.match_context2.match_data, ParserMatch(self.match_element2_different), t + 1, self) time_correlation_violation_detector.receive_atom(log_atom2) time_correlation_violation_detector.do_timer(time.time()) self.assertEqual( self.output_stream.getvalue(), self._expected_string_different_attributes % (datetime.fromtimestamp(t).strftime( self.datetime_format_string), self.correlation_rule.rule_id, description, 1, self.match_element1.get_match_string().decode(), self.a_class_selector.action_id, 22500, 22501)) def test6_prepare_history_entry(self): """ In this test case the prepare_history_entry-method is tested with multiple artefact_match_parameters. Also the case of not finding a parameter is tested. """ t = time.time() p1 = ParserMatch(self.match_element1) p2 = ParserMatch(self.match_element2) log_atom1 = LogAtom(self.match_context1.match_data, p1, t, self) log_atom2 = LogAtom(self.match_context2.match_data, p2, t + 5, self) result = self.correlation_rule.prepare_history_entry( self.a_class_selector, log_atom1) self.assertEqual(result, [t, 0, self.a_class_selector, p1, 22500]) result = self.correlation_rule.prepare_history_entry( self.b_class_selector, log_atom2) self.assertEqual(result, [t + 5, 0, self.b_class_selector, p2, 22500])
def build_analysis_pipeline(analysis_context): """ Define the function to create pipeline for parsing the log data. It has also to define an AtomizerFactory to instruct aminer how to process incoming data streams to create log atoms from them. """ date_format_string = b'%Y-%m-%d %H:%M:%S' cron = b' cron[' # Build the parsing model: service_children_disk_report = [ FixedDataModelElement('Space', b' Current Disk Data is: Filesystem Type Size Used Avail Use%'), DelimitedDataModelElement('Data', b'%'), AnyByteDataModelElement('Rest')] service_children_login_details = [ FixedDataModelElement('User/LoginDetails', b'User '), DelimitedDataModelElement('Username', b' '), FixedWordlistDataModelElement('Status', [b' logged in', b' logged out']), OptionalMatchModelElement('PastTime', SequenceModelElement('Time', [ FixedDataModelElement('Blank', b' '), DecimalIntegerValueModelElement('Minutes'), FixedDataModelElement('Ago', b' minutes ago.')]))] service_children_cron_job = [ DateTimeModelElement('DTM', date_format_string), FixedDataModelElement('UNameSpace1', b' '), DelimitedDataModelElement('UName', b' '), FixedDataModelElement('UNameSpace2', b' '), DelimitedDataModelElement('User', b' '), FixedDataModelElement('Cron', cron), DecimalIntegerValueModelElement('JobNumber'), FixedDataModelElement('Details', b']: Job `cron.daily` started.')] service_children_random_time = [FixedDataModelElement('Space', b'Random: '), DecimalIntegerValueModelElement('Random')] service_children_sensors = [SequenceModelElement('CPUTemp', [ FixedDataModelElement('FixedTemp', b'CPU Temp: '), DecimalIntegerValueModelElement('Temp'), FixedDataModelElement('Degrees', b'\xc2\xb0C')]), FixedDataModelElement('Space1', b', '), SequenceModelElement('CPUWorkload', [ FixedDataModelElement('FixedWorkload', b'CPU Workload: '), DecimalIntegerValueModelElement('Workload'), FixedDataModelElement('Percent', b'%')]), FixedDataModelElement('Space2', b', '), DateTimeModelElement('DTM', date_format_string)] service_children_user_ip_address = [ FixedDataModelElement('User/UserIPAddress', b'User '), DelimitedDataModelElement('Username', b' '), FixedDataModelElement('Action', b' changed IP address to '), IpAddressDataModelElement('IP')] service_children_cron_job_announcement = [ DateTimeModelElement('DTM', date_format_string), FixedDataModelElement('Space', b' '), DelimitedDataModelElement('UName', b' '), FixedDataModelElement('Cron', cron), DecimalIntegerValueModelElement('JobNumber'), FixedDataModelElement('Run', b']: Will run job `'), FixedWordlistDataModelElement('CronType', [b'cron.daily', b'cron.hourly', b'cron.monthly', b'cron.weekly']), FixedDataModelElement('StartTime', b'\' in 5 min.')] service_children_cron_job_execution = [ DateTimeModelElement('DTM', date_format_string), FixedDataModelElement('Space1', b' '), DelimitedDataModelElement('UName', b' '), FixedDataModelElement('Cron', cron), DecimalIntegerValueModelElement('JobNumber'), FixedDataModelElement('Job', b']: Job `'), FixedWordlistDataModelElement('CronType', [b'cron.daily', b'cron.hourly', b'cron.monthly', b'cron.weekly']), FixedDataModelElement('Started', b'\' started')] service_children_audit = [SequenceModelElement('path', [ FixedDataModelElement('type', b'type=PATH '), FixedDataModelElement('msg_audit', b'msg=audit('), DelimitedDataModelElement('msg', b':'), FixedDataModelElement('placeholder', b':'), DecimalIntegerValueModelElement('id'), FixedDataModelElement('item_string', b'): item='), DecimalIntegerValueModelElement('item'), FixedDataModelElement('name_string', b' name="'), DelimitedDataModelElement('name', b'"'), FixedDataModelElement('inode_string', b'" inode='), DecimalIntegerValueModelElement('inode'), FixedDataModelElement('dev_string', b' dev='), DelimitedDataModelElement('dev', b' '), FixedDataModelElement('mode_string', b' mode='), DecimalIntegerValueModelElement('mode', value_pad_type=DecimalIntegerValueModelElement.PAD_TYPE_ZERO), FixedDataModelElement('ouid_string', b' ouid='), DecimalIntegerValueModelElement('ouid'), FixedDataModelElement('ogid_string', b' ogid='), DecimalIntegerValueModelElement('ogid'), FixedDataModelElement('rdev_string', b' rdev='), DelimitedDataModelElement('rdev', b' '), FixedDataModelElement('nametype_string', b' nametype='), FixedWordlistDataModelElement('nametype', [b'NORMAL', b'ERROR'])]), SequenceModelElement('syscall', [ FixedDataModelElement('type', b'type=SYSCALL '), FixedDataModelElement('msg_audit', b'msg=audit('), DelimitedDataModelElement('msg', b':'), FixedDataModelElement('placeholder', b':'), DecimalIntegerValueModelElement('id'), FixedDataModelElement('arch_string', b'): arch='), DelimitedDataModelElement('arch', b' '), FixedDataModelElement('syscall_string', b' syscall='), DecimalIntegerValueModelElement('syscall'), FixedDataModelElement('success_string', b' success='), FixedWordlistDataModelElement('success', [b'yes', b'no']), FixedDataModelElement('exit_string', b' exit='), DecimalIntegerValueModelElement('exit'), AnyByteDataModelElement('remainding_data')])] service_children_parsing_model_element = [ DateTimeModelElement('DateTimeModelElement', b'Current DateTime: %d.%m.%Y %H:%M:%S'), DecimalFloatValueModelElement('DecimalFloatValueModelElement', value_sign_type='optional'), DecimalIntegerValueModelElement('DecimalIntegerValueModelElement', value_sign_type='optional', value_pad_type='blank'), SequenceModelElement('se', [ DelimitedDataModelElement('DelimitedDataModelElement', b';'), FixedDataModelElement('FixedDataModelElement', b';')])] # ElementValueBranchModelElement fixed_data_me1 = FixedDataModelElement("fixed1", b'match ') fixed_data_me2 = FixedDataModelElement("fixed2", b'fixed String') fixed_wordlist_data_model_element = FixedWordlistDataModelElement("wordlist", [b'data: ', b'string: ']) decimal_integer_value_model_element = DecimalIntegerValueModelElement("decimal") service_children_parsing_model_element.append( ElementValueBranchModelElement('ElementValueBranchModelElement', FirstMatchModelElement("first", [ SequenceModelElement("seq1", [fixed_data_me1, fixed_wordlist_data_model_element]), SequenceModelElement("seq2", [fixed_data_me1, fixed_wordlist_data_model_element, fixed_data_me2])]), "wordlist", {0: decimal_integer_value_model_element, 1: fixed_data_me2})) service_children_parsing_model_element.append(HexStringModelElement('HexStringModelElement')) service_children_parsing_model_element.append(SequenceModelElement('se2', [ FixedDataModelElement('FixedDataModelElement', b'Gateway IP-Address: '), IpAddressDataModelElement('IpAddressDataModelElement')])) import locale loc = locale.getlocale() if loc == (None, None): loc = ('en_US', 'utf8') service_children_parsing_model_element.append( MultiLocaleDateTimeModelElement('MultiLocaleDateTimeModelElement', [(b'%b %d %Y', None, '%s.%s' % loc)])) service_children_parsing_model_element.append( RepeatedElementDataModelElement('RepeatedElementDataModelElement', SequenceModelElement('SequenceModelElement', [ FixedDataModelElement('FixedDataModelElement', b'[drawn number]: '), DecimalIntegerValueModelElement('DecimalIntegerValueModelElement')]), 1)) service_children_parsing_model_element.append(VariableByteDataModelElement('VariableByteDataModelElement', b'-@#')) service_children_parsing_model_element.append(SequenceModelElement('se', [ WhiteSpaceLimitedDataModelElement('WhiteSpaceLimitedDataModelElement'), FixedDataModelElement('fixed', b' ')])) # The Base64StringModelElement must be just before the AnyByteDataModelElement to avoid unexpected Matches. service_children_parsing_model_element.append(Base64StringModelElement('Base64StringModelElement')) # The OptionalMatchModelElement must be paired with a FirstMatchModelElement because it accepts all data and thus no data gets # to the AnyByteDataModelElement. The AnyByteDataModelElement must be last, because all bytes are accepted. service_children_parsing_model_element.append( OptionalMatchModelElement('/', FirstMatchModelElement('FirstMatchModelElement//optional', [ FixedDataModelElement('FixedDataModelElement', b'The-searched-element-was-found!'), SequenceModelElement('se', [ FixedDataModelElement('FixedDME', b'Any:'), AnyByteDataModelElement('AnyByteDataModelElement')])]))) alphabet = b'ghijkl' service_children_ecd = [] for _, char in enumerate(alphabet): char = bytes([char]) service_children_ecd.append(FixedDataModelElement(char.decode(), char)) parsing_model = FirstMatchModelElement('model', [ SequenceModelElement('CronAnnouncement', service_children_cron_job_announcement), SequenceModelElement('CronExecution', service_children_cron_job_execution), SequenceModelElement('DailyCron', service_children_cron_job), SequenceModelElement('DiskReport', service_children_disk_report), SequenceModelElement('LoginDetails', service_children_login_details), DecimalIntegerValueModelElement('Random'), SequenceModelElement('RandomTime', service_children_random_time), SequenceModelElement('Sensors', service_children_sensors), SequenceModelElement('IPAddresses', service_children_user_ip_address), FirstMatchModelElement('type', service_children_audit), FirstMatchModelElement('ECD', service_children_ecd), FirstMatchModelElement('ParsingME', service_children_parsing_model_element)]) # Some generic imports. from aminer.analysis import AtomFilters # Create all global handler lists here and append the real handlers later on. # Use this filter to distribute all atoms to the analysis handlers. atom_filter = AtomFilters.SubhandlerFilter(None) from aminer.analysis.TimestampCorrectionFilters import SimpleMonotonicTimestampAdjust simple_monotonic_timestamp_adjust = SimpleMonotonicTimestampAdjust([atom_filter]) analysis_context.register_component(simple_monotonic_timestamp_adjust, component_name="SimpleMonotonicTimestampAdjust") from aminer.events.StreamPrinterEventHandler import StreamPrinterEventHandler from aminer.events.JsonConverterHandler import JsonConverterHandler stream_printer_event_handler = StreamPrinterEventHandler(analysis_context) json_converter_handler = JsonConverterHandler([stream_printer_event_handler], analysis_context) anomaly_event_handlers = [json_converter_handler] # Now define the AtomizerFactory using the model. A simple line based one is usually sufficient. from aminer.input.SimpleByteStreamLineAtomizerFactory import SimpleByteStreamLineAtomizerFactory analysis_context.atomizer_factory = SimpleByteStreamLineAtomizerFactory(parsing_model, [simple_monotonic_timestamp_adjust], anomaly_event_handlers) # Just report all unparsed atoms to the event handlers. from aminer.analysis.UnparsedAtomHandlers import SimpleUnparsedAtomHandler, VerboseUnparsedAtomHandler simple_unparsed_atom_handler = SimpleUnparsedAtomHandler(anomaly_event_handlers) atom_filter.add_handler(simple_unparsed_atom_handler, stop_when_handled_flag=False) analysis_context.register_component(simple_unparsed_atom_handler, component_name="SimpleUnparsedHandler") verbose_unparsed_atom_handler = VerboseUnparsedAtomHandler(anomaly_event_handlers, parsing_model) atom_filter.add_handler(verbose_unparsed_atom_handler, stop_when_handled_flag=True) analysis_context.register_component(verbose_unparsed_atom_handler, component_name="VerboseUnparsedHandler") from aminer.analysis.TimestampsUnsortedDetector import TimestampsUnsortedDetector timestamps_unsorted_detector = TimestampsUnsortedDetector(analysis_context.aminer_config, anomaly_event_handlers) atom_filter.add_handler(timestamps_unsorted_detector) analysis_context.register_component(timestamps_unsorted_detector, component_name="TimestampsUnsortedDetector") from aminer.analysis import Rules from aminer.analysis.AllowlistViolationDetector import AllowlistViolationDetector allowlist_rules = [ Rules.OrMatchRule([ Rules.AndMatchRule([ Rules.PathExistsMatchRule('/model/LoginDetails/PastTime/Time/Minutes'), Rules.NegationMatchRule(Rules.ValueMatchRule('/model/LoginDetails/Username', b'root')), Rules.DebugMatchRule(debug_match_result=True)]), Rules.AndMatchRule([ Rules.NegationMatchRule(Rules.PathExistsMatchRule('/model/LoginDetails/PastTime/Time/Minutes')), Rules.PathExistsMatchRule('/model/LoginDetails'), Rules.DebugMatchRule(debug_match_result=True)]), Rules.NegationMatchRule(Rules.PathExistsMatchRule('/model/LoginDetails'))])] # This rule list should trigger, when the line does not look like: User root (logged in, logged out) # or User 'username' (logged in, logged out) x minutes ago. allowlist_violation_detector = AllowlistViolationDetector(analysis_context.aminer_config, allowlist_rules, anomaly_event_handlers, output_log_line=True) analysis_context.register_component(allowlist_violation_detector, component_name="Allowlist") atom_filter.add_handler(allowlist_violation_detector) from aminer.analysis.ParserCount import ParserCount parser_count = ParserCount(analysis_context.aminer_config, None, anomaly_event_handlers, 10) analysis_context.register_component(parser_count, component_name="ParserCount") atom_filter.add_handler(parser_count) from aminer.analysis.EventTypeDetector import EventTypeDetector etd = EventTypeDetector(analysis_context.aminer_config, anomaly_event_handlers) analysis_context.register_component(etd, component_name="EventTypeDetector") atom_filter.add_handler(etd) from aminer.analysis.VariableTypeDetector import VariableTypeDetector vtd = VariableTypeDetector(analysis_context.aminer_config, anomaly_event_handlers, etd, silence_output_except_indicator=False, output_log_line=False, ignore_list=["/model/RandomTime"]) analysis_context.register_component(vtd, component_name="VariableTypeDetector") atom_filter.add_handler(vtd) from aminer.analysis.VariableCorrelationDetector import VariableCorrelationDetector vtd = VariableCorrelationDetector(analysis_context.aminer_config, anomaly_event_handlers, etd, disc_div_thres=0.5, ignore_list=["/model/RandomTime"]) analysis_context.register_component(vtd, component_name="VariableCorrelationDetector") atom_filter.add_handler(vtd) from aminer.analysis.EventCorrelationDetector import EventCorrelationDetector ecd = EventCorrelationDetector(analysis_context.aminer_config, anomaly_event_handlers, check_rules_flag=True, hypothesis_max_delta_time=1.0) analysis_context.register_component(ecd, component_name="EventCorrelationDetector") atom_filter.add_handler(ecd) from aminer.analysis.EventFrequencyDetector import EventFrequencyDetector efd = EventFrequencyDetector(analysis_context.aminer_config, anomaly_event_handlers, window_size=0.1) analysis_context.register_component(efd, component_name="EventFrequencyDetector") atom_filter.add_handler(efd) from aminer.analysis.EventSequenceDetector import EventSequenceDetector esd = EventSequenceDetector(analysis_context.aminer_config, anomaly_event_handlers, ['/model/ParsingME'], ignore_list=[ '/model/ECD/g', '/model/ECD/h', '/model/ECD/i', '/model/ECD/j', '/model/ECD/k', '/model/ECD/l', '/model/Random', '/model/RandomTime', '/model/DailyCron']) analysis_context.register_component(esd, component_name="EventSequenceDetector") atom_filter.add_handler(esd) from aminer.analysis.MatchFilter import MatchFilter match_filter = MatchFilter(analysis_context.aminer_config, ['/model/Random'], anomaly_event_handlers, target_value_list=[ 1, 10, 100], output_log_line=True) analysis_context.register_component(match_filter, component_name="MatchFilter") atom_filter.add_handler(match_filter) from aminer.analysis.NewMatchPathDetector import NewMatchPathDetector new_match_path_detector = NewMatchPathDetector(analysis_context.aminer_config, anomaly_event_handlers, auto_include_flag=True, output_log_line=True) analysis_context.register_component(new_match_path_detector, component_name="NewMatchPath") atom_filter.add_handler(new_match_path_detector) def tuple_transformation_function(match_value_list): """Only allow output of the EnhancedNewMatchPathValueComboDetector after every 10th element.""" extra_data = enhanced_new_match_path_value_combo_detector.known_values_dict.get(tuple(match_value_list)) if extra_data is not None: mod = 10 if (extra_data[2] + 1) % mod == 0: enhanced_new_match_path_value_combo_detector.auto_include_flag = False else: enhanced_new_match_path_value_combo_detector.auto_include_flag = True return match_value_list from aminer.analysis.EnhancedNewMatchPathValueComboDetector import EnhancedNewMatchPathValueComboDetector enhanced_new_match_path_value_combo_detector = EnhancedNewMatchPathValueComboDetector(analysis_context.aminer_config, [ '/model/DailyCron/UName', '/model/DailyCron/JobNumber'], anomaly_event_handlers, auto_include_flag=True, tuple_transformation_function=tuple_transformation_function, output_log_line=True) analysis_context.register_component(enhanced_new_match_path_value_combo_detector, component_name="EnhancedNewValueCombo") atom_filter.add_handler(enhanced_new_match_path_value_combo_detector) import re ip_match_action = Rules.EventGenerationMatchAction( "Analysis.Rules.IPv4InRFC1918MatchRule", "Private IP address occurred!", anomaly_event_handlers) vdmt = Rules.ValueDependentModuloTimeMatchRule(None, 3, ["/model/ECD/j", "/model/ECD/k", "/model/ECD/l"], {b"e": [0, 2.95]}, [0, 3]) mt = Rules.ModuloTimeMatchRule(None, 3, 0, 3, None) time_allowlist_rules = [ Rules.AndMatchRule([ Rules.ParallelMatchRule([ Rules.ValueDependentDelegatedMatchRule([ '/model/ECD/g', '/model/ECD/h', '/model/ECD/i', '/model/ECD/j', '/model/ECD/k', '/model/ECD/l'], { (b"a",): mt, (b"b",): mt, (b"c",): mt, (b"d",): vdmt, (b"e",): vdmt, (b"f",): vdmt, None: mt}, mt), Rules.IPv4InRFC1918MatchRule("/model/ParsingME/se2/IpAddressDataModelElement", ip_match_action), Rules.DebugHistoryMatchRule(debug_match_result=True) ]), # IP addresses 8.8.8.8, 8.8.4.4 and 10.0.0.0 - 10.255.255.255 are not allowed Rules.NegationMatchRule(Rules.ValueListMatchRule("/model/ParsingME/se2/IpAddressDataModelElement", [134744072, 134743044])), Rules.NegationMatchRule(Rules.ValueRangeMatchRule("/model/ParsingME/se2/IpAddressDataModelElement", 167772160, 184549375)), Rules.NegationMatchRule(Rules.StringRegexMatchRule("/model/type/syscall/success", re.compile(b"^no$"))) ]) ] time_allowlist_violation_detector = AllowlistViolationDetector( analysis_context.aminer_config, time_allowlist_rules, anomaly_event_handlers, output_log_line=True) analysis_context.register_component(time_allowlist_violation_detector, component_name="TimeAllowlist") atom_filter.add_handler(time_allowlist_violation_detector) from aminer.analysis.HistogramAnalysis import HistogramAnalysis, LinearNumericBinDefinition, ModuloTimeBinDefinition, \ PathDependentHistogramAnalysis modulo_time_bin_definition = ModuloTimeBinDefinition(86400, 3600, 0, 1, 24, True) linear_numeric_bin_definition = LinearNumericBinDefinition(50, 5, 20, True) histogram_analysis = HistogramAnalysis(analysis_context.aminer_config, [ ('/model/RandomTime/Random', modulo_time_bin_definition), ('/model/Random', linear_numeric_bin_definition)], 10, anomaly_event_handlers, output_log_line=True) analysis_context.register_component(histogram_analysis, component_name="HistogramAnalysis") atom_filter.add_handler(histogram_analysis) path_dependent_histogram_analysis = PathDependentHistogramAnalysis( analysis_context.aminer_config, '/model/RandomTime', modulo_time_bin_definition, 10, anomaly_event_handlers, output_log_line=True) analysis_context.register_component(path_dependent_histogram_analysis, component_name="PathDependentHistogramAnalysis") atom_filter.add_handler(path_dependent_histogram_analysis) from aminer.analysis.MatchValueAverageChangeDetector import MatchValueAverageChangeDetector match_value_average_change_detector = MatchValueAverageChangeDetector(analysis_context.aminer_config, anomaly_event_handlers, None, [ '/model/Random'], 100, 10, output_log_line=True) analysis_context.register_component(match_value_average_change_detector, component_name="MatchValueAverageChange") atom_filter.add_handler(match_value_average_change_detector) import sys from aminer.analysis.MatchValueStreamWriter import MatchValueStreamWriter match_value_stream_writer = MatchValueStreamWriter( sys.stdout, ['/model/Sensors/CPUTemp', '/model/Sensors/CPUWorkload', '/model/Sensors/DTM'], b';', b'') analysis_context.register_component(match_value_stream_writer, component_name="MatchValueStreamWriter") atom_filter.add_handler(match_value_stream_writer) from aminer.analysis.NewMatchPathValueComboDetector import NewMatchPathValueComboDetector new_match_path_value_combo_detector = NewMatchPathValueComboDetector( analysis_context.aminer_config, ['/model/IPAddresses/Username', '/model/IPAddresses/IP'], anomaly_event_handlers, output_log_line=True) analysis_context.register_component(new_match_path_value_combo_detector, component_name="NewMatchPathValueCombo") atom_filter.add_handler(new_match_path_value_combo_detector) from aminer.analysis.NewMatchIdValueComboDetector import NewMatchIdValueComboDetector new_match_id_value_combo_detector = NewMatchIdValueComboDetector(analysis_context.aminer_config, [ '/model/type/path/name', '/model/type/syscall/syscall'], anomaly_event_handlers, id_path_list=[ '/model/type/path/id', '/model/type/syscall/id'], min_allowed_time_diff=5, auto_include_flag=True, allow_missing_values_flag=True, output_log_line=True) analysis_context.register_component(new_match_id_value_combo_detector, component_name="NewMatchIdValueComboDetector") atom_filter.add_handler(new_match_id_value_combo_detector) from aminer.analysis.NewMatchPathValueDetector import NewMatchPathValueDetector new_match_path_value_detector = NewMatchPathValueDetector(analysis_context.aminer_config, [ '/model/DailyCron/JobNumber', '/model/IPAddresses/Username'], anomaly_event_handlers, auto_include_flag=True, output_log_line=True) analysis_context.register_component(new_match_path_value_detector, component_name="NewMatchPathValue") atom_filter.add_handler(new_match_path_value_detector) from aminer.analysis.MissingMatchPathValueDetector import MissingMatchPathValueDetector missing_match_path_value_detector = MissingMatchPathValueDetector( analysis_context.aminer_config, ['/model/DiskReport/Space'], anomaly_event_handlers, auto_include_flag=True, default_interval=2, realert_interval=5, output_log_line=True) analysis_context.register_component(missing_match_path_value_detector, component_name="MissingMatch") atom_filter.add_handler(missing_match_path_value_detector) from aminer.analysis.TimeCorrelationDetector import TimeCorrelationDetector time_correlation_detector = TimeCorrelationDetector( analysis_context.aminer_config, anomaly_event_handlers, 2, min_rule_attributes=1, max_rule_attributes=5, record_count_before_event=10000, output_log_line=True) analysis_context.register_component(time_correlation_detector, component_name="TimeCorrelationDetector") atom_filter.add_handler(time_correlation_detector) from aminer.analysis.TimeCorrelationViolationDetector import TimeCorrelationViolationDetector, CorrelationRule, EventClassSelector cron_job_announcement = CorrelationRule('CronJobAnnouncement', 5, 6, max_artefacts_a_for_single_b=1, artefact_match_parameters=[ ('/model/CronAnnouncement/JobNumber', '/model/CronExecution/JobNumber')]) a_class_selector = EventClassSelector('Announcement', [cron_job_announcement], None) b_class_selector = EventClassSelector('Execution', None, [cron_job_announcement]) rules = [Rules.PathExistsMatchRule('/model/CronAnnouncement/Run', a_class_selector), Rules.PathExistsMatchRule('/model/CronExecution/Job', b_class_selector)] time_correlation_violation_detector = TimeCorrelationViolationDetector(analysis_context.aminer_config, rules, anomaly_event_handlers, output_log_line=True) analysis_context.register_component(time_correlation_violation_detector, component_name="TimeCorrelationViolationDetector") atom_filter.add_handler(time_correlation_violation_detector)
def build_analysis_pipeline(analysis_context): """ Define the function to create pipeline for parsing the log data. It has also to define an AtomizerFactory to instruct aminer how to process incoming data streams to create log atoms from them. """ date_format_string = b'%Y-%m-%d %H:%M:%S' cron = b' cron[' # Build the parsing model: service_children_disk_report = [ FixedDataModelElement( 'Space', b' Current Disk Data is: Filesystem Type Size Used Avail Use%' ), DelimitedDataModelElement('Data', b'%'), AnyByteDataModelElement('Rest') ] service_children_login_details = [ FixedDataModelElement('User', b'User '), DelimitedDataModelElement('Username', b' '), FixedWordlistDataModelElement('Status', [b' logged in', b' logged out']), OptionalMatchModelElement( 'PastTime', SequenceModelElement('Time', [ FixedDataModelElement('Blank', b' '), DecimalIntegerValueModelElement('Minutes'), FixedDataModelElement('Ago', b' minutes ago.') ])) ] service_children_cron_job = [ DateTimeModelElement('DTM', date_format_string), FixedDataModelElement('UNameSpace1', b' '), DelimitedDataModelElement('UName', b' '), FixedDataModelElement('UNameSpace2', b' '), DelimitedDataModelElement('User', b' '), FixedDataModelElement('Cron', cron), DecimalIntegerValueModelElement('JobNumber'), FixedDataModelElement('Details', b']: Job `cron.daily` started.') ] service_children_random_time = [ FixedDataModelElement('Space', b'Random: '), DecimalIntegerValueModelElement('Random') ] service_children_sensors = [ SequenceModelElement('CPUTemp', [ FixedDataModelElement('FixedTemp', b'CPU Temp: '), DecimalIntegerValueModelElement('Temp'), FixedDataModelElement('Degrees', b'\xc2\xb0C') ]), FixedDataModelElement('Space1', b', '), SequenceModelElement('CPUWorkload', [ FixedDataModelElement('Fixed Workload', b'CPU Workload: '), DecimalIntegerValueModelElement('Workload'), FixedDataModelElement('Percent', b'%') ]), FixedDataModelElement('Space2', b', '), DateTimeModelElement('DTM', date_format_string) ] service_children_user_ip_address = [ FixedDataModelElement('User', b'User '), DelimitedDataModelElement('Username', b' '), FixedDataModelElement('Action', b' changed IP address to '), IpAddressDataModelElement('IP') ] service_children_cron_job_announcement = [ DateTimeModelElement('DTM', date_format_string), FixedDataModelElement('Space', b' '), DelimitedDataModelElement('UName', b' '), FixedDataModelElement('Cron', cron), DecimalIntegerValueModelElement('JobNumber'), FixedDataModelElement('Run', b']: Will run job `'), FixedWordlistDataModelElement( 'CronType', [b'cron.daily', b'cron.hourly', b'cron.monthly', b'cron.weekly']), FixedDataModelElement('Start Time', b'\' in 5 min.') ] service_children_cron_job_execution = [ DateTimeModelElement('DTM', date_format_string), FixedDataModelElement('Space1', b' '), DelimitedDataModelElement('UName', b' '), FixedDataModelElement('Cron', cron), DecimalIntegerValueModelElement('JobNumber'), FixedDataModelElement('Job', b']: Job `'), FixedWordlistDataModelElement( 'CronType', [b'cron.daily', b'cron.hourly', b'cron.monthly', b'cron.weekly']), FixedDataModelElement('Started', b'\' started') ] service_children_parsing_model_element = [ DateTimeModelElement('DateTimeModelElement', b'Current DateTime: %d.%m.%Y %H:%M:%S'), DecimalFloatValueModelElement('DecimalFloatValueModelElement', value_sign_type='optional'), DecimalIntegerValueModelElement('DecimalIntegerValueModelElement', value_sign_type='optional', value_pad_type='blank'), SequenceModelElement('', [ DelimitedDataModelElement('DelimitedDataModelElement', b';'), FixedDataModelElement('FixedDataModelElement', b';') ]) ] # ElementValueBranchModelElement fixed_data_me1 = FixedDataModelElement("fixed1", b'match ') fixed_data_me2 = FixedDataModelElement("fixed2", b'fixed String') fixed_wordlist_data_model_element = FixedWordlistDataModelElement( "wordlist", [b'data: ', b'string: ']) decimal_integer_value_model_element = DecimalIntegerValueModelElement( "decimal") service_children_parsing_model_element.append( ElementValueBranchModelElement( 'ElementValueBranchModelElement', FirstMatchModelElement("first", [ SequenceModelElement( "seq1", [fixed_data_me1, fixed_wordlist_data_model_element]), SequenceModelElement("seq2", [ fixed_data_me1, fixed_wordlist_data_model_element, fixed_data_me2 ]) ]), "wordlist", { 0: decimal_integer_value_model_element, 1: fixed_data_me2 })) service_children_parsing_model_element.append( HexStringModelElement('HexStringModelElement')) service_children_parsing_model_element.append( SequenceModelElement('', [ FixedDataModelElement('FixedDataModelElement', b'Gateway IP-Address: '), IpAddressDataModelElement('IpAddressDataModelElement') ])) service_children_parsing_model_element.append( MultiLocaleDateTimeModelElement('MultiLocaleDateTimeModelElement', [(b'%b %d %Y', "de_AT.utf8", None)])) service_children_parsing_model_element.append( RepeatedElementDataModelElement( 'RepeatedElementDataModelElement', SequenceModelElement('SequenceModelElement', [ FixedDataModelElement('FixedDataModelElement', b'drawn number: '), DecimalIntegerValueModelElement( 'DecimalIntegerValueModelElement') ]), 1)) service_children_parsing_model_element.append( VariableByteDataModelElement('VariableByteDataModelElement', b'-@#')) service_children_parsing_model_element.append( SequenceModelElement('', [ WhiteSpaceLimitedDataModelElement( 'WhiteSpaceLimitedDataModelElement'), FixedDataModelElement('', b' ') ])) # The Base64StringModelElement must be just before the AnyByteDataModelElement to avoid unexpected Matches. service_children_parsing_model_element.append( Base64StringModelElement('Base64StringModelElement')) # The OptionalMatchModelElement must be paired with a FirstMatchModelElement because it accepts all data and thus no data gets # to the AnyByteDataModelElement. The AnyByteDataModelElement must be last, because all bytes are accepted. service_children_parsing_model_element.append( OptionalMatchModelElement( 'OptionalMatchModelElement', FirstMatchModelElement('FirstMatchModelElement', [ FixedDataModelElement('FixedDataModelElement', b'The-searched-element-was-found!'), AnyByteDataModelElement('AnyByteDataModelElement') ]))) parsing_model = FirstMatchModelElement('model', [ SequenceModelElement('CronAnnouncement', service_children_cron_job_announcement), SequenceModelElement('CronExecution', service_children_cron_job_execution), SequenceModelElement('DailyCron', service_children_cron_job), SequenceModelElement('DiskReport', service_children_disk_report), SequenceModelElement('LoginDetails', service_children_login_details), DecimalIntegerValueModelElement('Random'), SequenceModelElement('RandomTime', service_children_random_time), SequenceModelElement('Sensors', service_children_sensors), SequenceModelElement('IPAddresses', service_children_user_ip_address), FirstMatchModelElement('ParsingME', service_children_parsing_model_element) ]) # Some generic imports. from aminer.analysis import AtomFilters # Create all global handler lists here and append the real handlers # later on. # Use this filter to distribute all atoms to the analysis handlers. atom_filter = AtomFilters.SubhandlerFilter(None) from aminer.analysis.TimestampCorrectionFilters import SimpleMonotonicTimestampAdjust simple_monotonic_timestamp_adjust = SimpleMonotonicTimestampAdjust( [atom_filter]) analysis_context.register_component( simple_monotonic_timestamp_adjust, component_name="SimpleMonotonicTimestampAdjust") from aminer.events.StreamPrinterEventHandler import StreamPrinterEventHandler stream_printer_event_handler = StreamPrinterEventHandler(analysis_context) from aminer.events.SyslogWriterEventHandler import SyslogWriterEventHandler syslog_event_handler = SyslogWriterEventHandler(analysis_context) from aminer.events.DefaultMailNotificationEventHandler import DefaultMailNotificationEventHandler if DefaultMailNotificationEventHandler.CONFIG_KEY_MAIL_TARGET_ADDRESS in analysis_context.aminer_config.config_properties: mail_notification_handler = DefaultMailNotificationEventHandler( analysis_context) analysis_context.register_component(mail_notification_handler, component_name="MailHandler") anomaly_event_handlers = [ stream_printer_event_handler, syslog_event_handler, mail_notification_handler ] # Now define the AtomizerFactory using the model. A simple line based one is usually sufficient. from aminer.input.SimpleByteStreamLineAtomizerFactory import SimpleByteStreamLineAtomizerFactory analysis_context.atomizer_factory = SimpleByteStreamLineAtomizerFactory( parsing_model, [simple_monotonic_timestamp_adjust], anomaly_event_handlers) # Just report all unparsed atoms to the event handlers. from aminer.analysis.UnparsedAtomHandlers import SimpleUnparsedAtomHandler simple_unparsed_atom_handler = SimpleUnparsedAtomHandler( anomaly_event_handlers) atom_filter.add_handler(simple_unparsed_atom_handler, stop_when_handled_flag=True) analysis_context.register_component(simple_unparsed_atom_handler, component_name="UnparsedHandler") from aminer.analysis.TimestampsUnsortedDetector import TimestampsUnsortedDetector timestamps_unsorted_detector = TimestampsUnsortedDetector( analysis_context.aminer_config, anomaly_event_handlers) atom_filter.add_handler(timestamps_unsorted_detector) analysis_context.register_component( timestamps_unsorted_detector, component_name="TimestampsUnsortedDetector") from aminer.analysis import Rules from aminer.analysis.AllowlistViolationDetector import AllowlistViolationDetector allowlist_rules = [ Rules.OrMatchRule([ Rules.AndMatchRule([ Rules.PathExistsMatchRule( '/model/LoginDetails/PastTime/Time/Minutes'), Rules.NegationMatchRule( Rules.ValueMatchRule('/model/LoginDetails/Username', b'root')) ]), Rules.AndMatchRule([ Rules.NegationMatchRule( Rules.PathExistsMatchRule( '/model/LoginDetails/PastTime/Time/Minutes')), Rules.PathExistsMatchRule('/model/LoginDetails') ]), Rules.NegationMatchRule( Rules.PathExistsMatchRule('/model/LoginDetails')) ]) ] # This rule list should trigger, when the line does not look like: User root (logged in, logged out) # or User 'username' (logged in, logged out) x minutes ago. allowlist_violation_detector = AllowlistViolationDetector( analysis_context.aminer_config, allowlist_rules, anomaly_event_handlers) analysis_context.register_component(allowlist_violation_detector, component_name="Allowlist") atom_filter.add_handler(allowlist_violation_detector) from aminer.analysis.NewMatchPathDetector import NewMatchPathDetector new_match_path_detector = NewMatchPathDetector( analysis_context.aminer_config, anomaly_event_handlers, auto_include_flag=True) analysis_context.register_component(new_match_path_detector, component_name="NewMatchPath") atom_filter.add_handler(new_match_path_detector) def tuple_transformation_function(match_value_list): """Only allow output of the EnhancedNewMatchPathValueComboDetector after every 10000th element.""" extra_data = enhanced_new_match_path_value_combo_detector.known_values_dict.get( tuple(match_value_list)) if extra_data is not None: mod = 10000 if (extra_data[2] + 1) % mod == 0: enhanced_new_match_path_value_combo_detector.auto_include_flag = False else: enhanced_new_match_path_value_combo_detector.auto_include_flag = True return match_value_list from aminer.analysis.EnhancedNewMatchPathValueComboDetector import EnhancedNewMatchPathValueComboDetector enhanced_new_match_path_value_combo_detector = EnhancedNewMatchPathValueComboDetector( analysis_context.aminer_config, ['/model/DailyCron/UName', '/model/DailyCron/JobNumber'], anomaly_event_handlers, auto_include_flag=True, tuple_transformation_function=tuple_transformation_function) analysis_context.register_component( enhanced_new_match_path_value_combo_detector, component_name="EnhancedNewValueCombo") atom_filter.add_handler(enhanced_new_match_path_value_combo_detector) from aminer.analysis.HistogramAnalysis import HistogramAnalysis, LinearNumericBinDefinition, ModuloTimeBinDefinition, \ PathDependentHistogramAnalysis modulo_time_bin_definition = ModuloTimeBinDefinition( 86400, 3600, 0, 1, 24, True) linear_numeric_bin_definition = LinearNumericBinDefinition(50, 5, 20, True) histogram_analysis = HistogramAnalysis( analysis_context.aminer_config, [('/model/RandomTime/Random', modulo_time_bin_definition), ('/model/Random', linear_numeric_bin_definition)], 10, anomaly_event_handlers) analysis_context.register_component(histogram_analysis, component_name="HistogramAnalysis") atom_filter.add_handler(histogram_analysis) path_dependent_histogram_analysis = PathDependentHistogramAnalysis( analysis_context.aminer_config, '/model/RandomTime', modulo_time_bin_definition, 10, anomaly_event_handlers) analysis_context.register_component( path_dependent_histogram_analysis, component_name="PathDependentHistogramAnalysis") atom_filter.add_handler(path_dependent_histogram_analysis) from aminer.analysis.MatchValueAverageChangeDetector import MatchValueAverageChangeDetector match_value_average_change_detector = MatchValueAverageChangeDetector( analysis_context.aminer_config, anomaly_event_handlers, None, ['/model/Random'], 100, 10) analysis_context.register_component( match_value_average_change_detector, component_name="MatchValueAverageChange") atom_filter.add_handler(match_value_average_change_detector) import sys from aminer.analysis.MatchValueStreamWriter import MatchValueStreamWriter match_value_stream_writer = MatchValueStreamWriter(sys.stdout, [ '/model/Sensors/CPUTemp', '/model/Sensors/CPUWorkload', '/model/Sensors/DTM' ], b';', b'') analysis_context.register_component( match_value_stream_writer, component_name="MatchValueStreamWriter") atom_filter.add_handler(match_value_stream_writer) from aminer.analysis.NewMatchPathValueComboDetector import NewMatchPathValueComboDetector new_match_path_value_combo_detector = NewMatchPathValueComboDetector( analysis_context.aminer_config, ['/model/IPAddresses/Username', '/model/IPAddresses/IP'], anomaly_event_handlers, auto_include_flag=True) analysis_context.register_component( new_match_path_value_combo_detector, component_name="NewMatchPathValueCombo") atom_filter.add_handler(new_match_path_value_combo_detector) from aminer.analysis.NewMatchPathValueDetector import NewMatchPathValueDetector new_match_path_value_detector = NewMatchPathValueDetector( analysis_context.aminer_config, ['/model/DailyCron/JobNumber', '/model/IPAddresses/Username'], anomaly_event_handlers, auto_include_flag=True) analysis_context.register_component(new_match_path_value_detector, component_name="NewMatchPathValue") atom_filter.add_handler(new_match_path_value_detector) from aminer.analysis.MissingMatchPathValueDetector import MissingMatchPathValueDetector missing_match_path_value_detector = MissingMatchPathValueDetector( analysis_context.aminer_config, ['/model/DiskReport/Space'], anomaly_event_handlers, auto_include_flag=True, default_interval=2, realert_interval=5) analysis_context.register_component(missing_match_path_value_detector, component_name="MissingMatch") atom_filter.add_handler(missing_match_path_value_detector) from aminer.analysis.TimeCorrelationDetector import TimeCorrelationDetector time_correlation_detector = TimeCorrelationDetector( analysis_context.aminer_config, anomaly_event_handlers, 2, min_rule_attributes=1, max_rule_attributes=5, record_count_before_event=70000, output_log_line=True) analysis_context.register_component( time_correlation_detector, component_name="TimeCorrelationDetector") atom_filter.add_handler(time_correlation_detector) from aminer.analysis.TimeCorrelationViolationDetector import TimeCorrelationViolationDetector, CorrelationRule, EventClassSelector cron_job_announcement = CorrelationRule( 'CronJobAnnouncement', 5, 6, max_artefacts_a_for_single_b=1, artefact_match_parameters=[('/model/CronAnnouncement/JobNumber', '/model/CronExecution/JobNumber')]) a_class_selector = EventClassSelector('Announcement', [cron_job_announcement], None) b_class_selector = EventClassSelector('Execution', None, [cron_job_announcement]) rules = [ Rules.PathExistsMatchRule('/model/CronAnnouncement/Run', a_class_selector), Rules.PathExistsMatchRule('/model/CronExecution/Job', b_class_selector) ] time_correlation_violation_detector = TimeCorrelationViolationDetector( analysis_context.aminer_config, rules, anomaly_event_handlers) analysis_context.register_component( time_correlation_violation_detector, component_name="TimeCorrelationViolationDetector") atom_filter.add_handler(time_correlation_violation_detector)
def run_time_correlation_violation_detector(self, chance): results = [None] * self.iterations avg = 0 z = 0 while z < self.iterations: correlation_rule = CorrelationRule('Correlation', 0, chance, max_artefacts_a_for_single_b=1, artefact_match_parameters=[ ('/integer/d0', '/integer/d1') ]) a_class_selector = EventClassSelector('Selector1', [correlation_rule], None) b_class_selector = EventClassSelector('Selector2', None, [correlation_rule]) rules = [ Rules.PathExistsMatchRule('/integer/d0', a_class_selector), Rules.PathExistsMatchRule('/integer/d1', b_class_selector) ] time_correlation_violation_detector = TimeCorrelationViolationDetector( self.analysis_context.aminer_config, rules, [self.stream_printer_event_handler]) seconds = time.time() s = seconds i = 0 decimal_integer_value_me = DecimalIntegerValueModelElement( 'd0', DecimalIntegerValueModelElement.SIGN_TYPE_NONE, DecimalIntegerValueModelElement.PAD_TYPE_NONE) while int(time.time() - seconds) < self.waiting_time: integer = '/integer' p = process_time() r = random.randint(1, 100) seconds = seconds + process_time() - p decimal_integer_value_me1 = DecimalIntegerValueModelElement( 'd1', DecimalIntegerValueModelElement.SIGN_TYPE_NONE, DecimalIntegerValueModelElement.PAD_TYPE_NONE) match_context = MatchContext(str(i).encode()) match_element = decimal_integer_value_me.get_match_element( integer, match_context) log_atom = LogAtom(match_element.match_string, ParserMatch(match_element), s, time_correlation_violation_detector) time_correlation_violation_detector.receive_atom(log_atom) match_context = MatchContext(str(i).encode()) match_element = decimal_integer_value_me1.get_match_element( integer, match_context) log_atom = LogAtom(match_element.match_string, ParserMatch(match_element), s + r / 100, time_correlation_violation_detector) time_correlation_violation_detector.receive_atom(log_atom) s = s + r / 100 if r / 100 >= chance: p = process_time() match_context = MatchContext(str(i).encode()) match_element = decimal_integer_value_me.get_match_element( integer, match_context) log_atom = LogAtom(match_element.match_string, ParserMatch(match_element), s, time_correlation_violation_detector) time_correlation_violation_detector.receive_atom(log_atom) seconds = seconds + process_time() - p time_correlation_violation_detector.do_timer(s) i = i + 1 results[z] = i z = z + 1 avg = avg + i avg = avg / self.iterations type(self).result = self.result + self.result_string % ( time_correlation_violation_detector.__class__.__name__, avg, results, '%d%% chance of not finding an element' % ((1 - chance) * 100))