def build_analysis_pipeline(analysis_context): """ Define the function to create pipeline for parsing the log data. It has also to define an AtomizerFactory to instruct AMiner how to process incoming data streams to create log atoms from them. """ # Build the parsing model: from aminer.parsing import AnyByteDataModelElement parsing_model = AnyByteDataModelElement('AnyByteDataModelElement') # Some generic imports. from aminer.analysis import AtomFilters # Create all global handler lists here and append the real handlers later on. # Use this filter to distribute all atoms to the analysis handlers. atom_filter = AtomFilters.SubhandlerFilter(None) from aminer.events.StreamPrinterEventHandler import StreamPrinterEventHandler stream_printer_event_handler = StreamPrinterEventHandler(analysis_context) anomaly_event_handlers = [stream_printer_event_handler] # Now define the AtomizerFactory using the model. A simple line # based one is usually sufficient. from aminer.input import SimpleByteStreamLineAtomizerFactory analysis_context.atomizer_factory = SimpleByteStreamLineAtomizerFactory( parsing_model, [atom_filter], anomaly_event_handlers) # Just report all unparsed atoms to the event handlers. from aminer.input import SimpleUnparsedAtomHandler simple_unparsed_atom_handler = SimpleUnparsedAtomHandler( anomaly_event_handlers) atom_filter.add_handler(simple_unparsed_atom_handler, stop_when_handled_flag=True) analysis_context.register_component(simple_unparsed_atom_handler, component_name="UnparsedHandler") from aminer.analysis import NewMatchPathDetector new_match_path_detector = NewMatchPathDetector( analysis_context.aminer_config, anomaly_event_handlers, auto_include_flag=True) analysis_context.register_component(new_match_path_detector, component_name="NewMatchPath") atom_filter.add_handler(new_match_path_detector) from aminer.analysis.NewMatchPathValueDetector import NewMatchPathValueDetector new_match_path_value_detector = NewMatchPathValueDetector( analysis_context.aminer_config, ['/AnyByteDataModelElement'], anomaly_event_handlers, auto_include_flag=True) analysis_context.register_component(new_match_path_value_detector, component_name="NewMatchPathValue") atom_filter.add_handler(new_match_path_value_detector)
def build_analysis_pipeline(analysis_context): """ Define the function to create pipeline for parsing the log data. It has also to define an AtomizerFactory to instruct aminer how to process incoming data streams to create log atoms from them. """ # Build the parsing model: service_children_disk_report = [ FixedDataModelElement( 'Space', b' Current Disk Data is: Filesystem Type Size Used Avail Use%' ), DelimitedDataModelElement('Data', b'%'), AnyByteDataModelElement('Rest') ] service_children_login_details = [ FixedDataModelElement('User', b'User '), DelimitedDataModelElement('Username', b' '), FixedWordlistDataModelElement('Status', [b' logged in', b' logged out']), OptionalMatchModelElement( 'PastTime', SequenceModelElement('Time', [ FixedDataModelElement('Blank', b' '), DecimalIntegerValueModelElement('Minutes'), FixedDataModelElement('Ago', b' minutes ago.') ])) ] service_children_cron_job = [ DateTimeModelElement('DTM', b'%Y-%m-%d %H:%M:%S'), FixedDataModelElement('UNameSpace1', b' '), DelimitedDataModelElement('UName', b' '), FixedDataModelElement('UNameSpace2', b' '), DelimitedDataModelElement('User', b' '), FixedDataModelElement('Cron', b' cron['), DecimalIntegerValueModelElement('JobNumber'), FixedDataModelElement('Details', b']: Job `cron.daily` started.') ] service_children_random_time = [ FixedDataModelElement('Space', b'Random: '), DecimalIntegerValueModelElement('Random') ] service_children_sensors = [ SequenceModelElement('CPUTemp', [ FixedDataModelElement('FixedTemp', b'CPU Temp: '), DecimalIntegerValueModelElement('Temp'), FixedDataModelElement('Degrees', b'\xc2\xb0C') ]), FixedDataModelElement('Space1', b', '), SequenceModelElement('CPUWorkload', [ FixedDataModelElement('FixedWorkload', b'CPUWorkload: '), DecimalIntegerValueModelElement('Workload'), FixedDataModelElement('Percent', b'%') ]), FixedDataModelElement('Space2', b', '), DateTimeModelElement('DTM', b'%Y-%m-%d %H:%M:%S') ] service_children_user_ip_address = [ FixedDataModelElement('User', b'User '), DelimitedDataModelElement('Username', b' '), FixedDataModelElement('Action', b' changed IP address to '), IpAddressDataModelElement('IP') ] service_children_cron_job_announcement = [ DateTimeModelElement('DTM', b'%Y-%m-%d %H:%M:%S'), FixedDataModelElement('Space', b' '), DelimitedDataModelElement('UName', b' '), FixedDataModelElement('Cron', b' cron['), DecimalIntegerValueModelElement('JobNumber'), FixedDataModelElement('Run', b']: Will run job `'), FixedWordlistDataModelElement( 'CronType', [b'cron.daily', b'cron.hourly', b'cron.monthly', b'cron.weekly']), FixedDataModelElement('StartTime', b'\' in 5 min.') ] service_children_cron_job_execution = [ DateTimeModelElement('DTM', b'%Y-%m-%d %H:%M:%S'), FixedDataModelElement('Space1', b' '), DelimitedDataModelElement('UName', b' '), FixedDataModelElement('Cron', b' cron['), DecimalIntegerValueModelElement('JobNumber'), FixedDataModelElement('Job', b']: Job `'), FixedWordlistDataModelElement( 'CronType', [b'cron.daily', b'cron.hourly', b'cron.monthly', b'cron.weekly']), FixedDataModelElement('Started', b'\' started') ] parsing_model = FirstMatchModelElement('model', [ SequenceModelElement('CronAnnouncement', service_children_cron_job_announcement), SequenceModelElement('CronExecution', service_children_cron_job_execution), SequenceModelElement('DailyCron', service_children_cron_job), SequenceModelElement('DiskReport', service_children_disk_report), SequenceModelElement('LoginDetails', service_children_login_details), DecimalIntegerValueModelElement('Random'), SequenceModelElement('RandomTime', service_children_random_time), SequenceModelElement('Sensors', service_children_sensors), SequenceModelElement('IPAddresses', service_children_user_ip_address) ]) # Some generic imports. from aminer.analysis import AtomFilters # Create all global handler lists here and append the real handlers later on. # Use this filter to distribute all atoms to the analysis handlers. atom_filters = AtomFilters.SubhandlerFilter(None) analysis_context.register_component(atom_filters, component_name="AtomFilter") from aminer.analysis.TimestampCorrectionFilters import SimpleMonotonicTimestampAdjust simple_monotonic_timestamp_adjust = SimpleMonotonicTimestampAdjust( [atom_filters]) analysis_context.register_component( simple_monotonic_timestamp_adjust, component_name="SimpleMonotonicTimestampAdjust") from aminer.events.StreamPrinterEventHandler import StreamPrinterEventHandler stream_printer_event_handler = StreamPrinterEventHandler( analysis_context) # skipcq: BAN-B108 from aminer.events.Utils import VolatileLogarithmicBackoffEventHistory volatile_logarithmic_backoff_event_history = VolatileLogarithmicBackoffEventHistory( 100) anomaly_event_handlers = [ stream_printer_event_handler, volatile_logarithmic_backoff_event_history ] analysis_context.register_component( volatile_logarithmic_backoff_event_history, component_name="VolatileLogarithmicBackoffEventHistory") # Now define the AtomizerFactory using the model. A simple line based one is usually sufficient. from aminer.input.SimpleByteStreamLineAtomizerFactory import SimpleByteStreamLineAtomizerFactory analysis_context.atomizer_factory = SimpleByteStreamLineAtomizerFactory( parsing_model, [simple_monotonic_timestamp_adjust], anomaly_event_handlers) # Just report all unparsed atoms to the event handlers. from aminer.analysis.UnparsedAtomHandlers import SimpleUnparsedAtomHandler simple_unparsed_atom_handler = SimpleUnparsedAtomHandler( anomaly_event_handlers) atom_filters.add_handler(simple_unparsed_atom_handler, stop_when_handled_flag=True) analysis_context.register_component(simple_unparsed_atom_handler, component_name="UnparsedHandler") from aminer.analysis.TimestampsUnsortedDetector import TimestampsUnsortedDetector timestamps_unsorted_detector = TimestampsUnsortedDetector( analysis_context.aminer_config, anomaly_event_handlers) atom_filters.add_handler(timestamps_unsorted_detector) analysis_context.register_component( timestamps_unsorted_detector, component_name="TimestampsUnsortedDetector") from aminer.analysis import Rules from aminer.analysis.AllowlistViolationDetector import AllowlistViolationDetector allowlist_rules = [ Rules.OrMatchRule([ Rules.AndMatchRule([ Rules.PathExistsMatchRule( '/model/LoginDetails/PastTime/Time/Minutes'), Rules.NegationMatchRule( Rules.ValueMatchRule('/model/LoginDetails/Username', b'root')) ]), Rules.AndMatchRule([ Rules.NegationMatchRule( Rules.PathExistsMatchRule( '/model/LoginDetails/PastTime/Time/Minutes')), Rules.PathExistsMatchRule('/model/LoginDetails') ]), Rules.NegationMatchRule( Rules.PathExistsMatchRule('/model/LoginDetails')) ]) ] # This rule list should trigger, when the line does not look like: User root (logged in, logged out) # or User 'username' (logged in, logged out) x minutes ago. allowlist_violation_detector = AllowlistViolationDetector( analysis_context.aminer_config, allowlist_rules, anomaly_event_handlers) analysis_context.register_component(allowlist_violation_detector, component_name="Allowlist") atom_filters.add_handler(allowlist_violation_detector) from aminer.analysis.ParserCount import ParserCount parser_count = ParserCount(analysis_context.aminer_config, None, anomaly_event_handlers, 10) analysis_context.register_component(parser_count, component_name="ParserCount") atom_filters.add_handler(parser_count) from aminer.analysis.EventCorrelationDetector import EventCorrelationDetector ecd = EventCorrelationDetector(analysis_context.aminer_config, anomaly_event_handlers, check_rules_flag=True, hypothesis_max_delta_time=1.0, auto_include_flag=True) analysis_context.register_component( ecd, component_name="EventCorrelationDetector") atom_filters.add_handler(ecd) from aminer.analysis.NewMatchPathDetector import NewMatchPathDetector new_match_path_detector = NewMatchPathDetector( analysis_context.aminer_config, anomaly_event_handlers, auto_include_flag=True) analysis_context.register_component(new_match_path_detector, component_name="NewMatchPath") atom_filters.add_handler(new_match_path_detector) def tuple_transformation_function(match_value_list): """Only allow output of the EnhancedNewMatchPathValueComboDetector after every 10000th element.""" extra_data = enhanced_new_match_path_value_combo_detector.known_values_dict.get( tuple(match_value_list)) if extra_data is not None: mod = 10000 if (extra_data[2] + 1) % mod == 0: enhanced_new_match_path_value_combo_detector.auto_include_flag = False else: enhanced_new_match_path_value_combo_detector.auto_include_flag = True return match_value_list from aminer.analysis.EnhancedNewMatchPathValueComboDetector import EnhancedNewMatchPathValueComboDetector enhanced_new_match_path_value_combo_detector = EnhancedNewMatchPathValueComboDetector( analysis_context.aminer_config, ['/model/DailyCron/UName', '/model/DailyCron/JobNumber'], anomaly_event_handlers, auto_include_flag=False, tuple_transformation_function=tuple_transformation_function) analysis_context.register_component( enhanced_new_match_path_value_combo_detector, component_name="EnhancedNewValueCombo") atom_filters.add_handler(enhanced_new_match_path_value_combo_detector) from aminer.analysis.HistogramAnalysis import HistogramAnalysis, LinearNumericBinDefinition, ModuloTimeBinDefinition, \ PathDependentHistogramAnalysis modulo_time_bin_definition = ModuloTimeBinDefinition( 86400, 3600, 0, 1, 24, True) linear_numeric_bin_definition = LinearNumericBinDefinition(50, 5, 20, True) histogram_analysis = HistogramAnalysis( analysis_context.aminer_config, [('/model/RandomTime/Random', modulo_time_bin_definition), ('/model/Random', linear_numeric_bin_definition)], 10, anomaly_event_handlers) analysis_context.register_component(histogram_analysis, component_name="HistogramAnalysis") atom_filters.add_handler(histogram_analysis) path_dependent_histogram_analysis = PathDependentHistogramAnalysis( analysis_context.aminer_config, '/model/RandomTime', modulo_time_bin_definition, 10, anomaly_event_handlers) analysis_context.register_component( path_dependent_histogram_analysis, component_name="PathDependentHistogramAnalysis") atom_filters.add_handler(path_dependent_histogram_analysis) from aminer.analysis.MatchValueAverageChangeDetector import MatchValueAverageChangeDetector match_value_average_change_detector = MatchValueAverageChangeDetector( analysis_context.aminer_config, anomaly_event_handlers, None, ['/model/Random'], 100, 10) analysis_context.register_component( match_value_average_change_detector, component_name="MatchValueAverageChange") atom_filters.add_handler(match_value_average_change_detector) import sys from aminer.analysis.MatchValueStreamWriter import MatchValueStreamWriter match_value_stream_writer = MatchValueStreamWriter(sys.stdout, [ '/model/Sensors/CPUTemp', '/model/Sensors/CPUWorkload', '/model/Sensors/DTM' ], b';', b'') analysis_context.register_component( match_value_stream_writer, component_name="MatchValueStreamWriter") atom_filters.add_handler(match_value_stream_writer) from aminer.analysis.NewMatchPathValueComboDetector import NewMatchPathValueComboDetector new_match_path_value_combo_detector = NewMatchPathValueComboDetector( analysis_context.aminer_config, ['/model/IPAddresses/Username', '/model/IPAddresses/IP'], anomaly_event_handlers, auto_include_flag=False) analysis_context.register_component( new_match_path_value_combo_detector, component_name="NewMatchPathValueCombo") atom_filters.add_handler(new_match_path_value_combo_detector) from aminer.analysis.NewMatchIdValueComboDetector import NewMatchIdValueComboDetector new_match_id_value_combo_detector = NewMatchIdValueComboDetector( analysis_context.aminer_config, ['/model/type/path/name', '/model/type/syscall/syscall'], anomaly_event_handlers, id_path_list=['/model/type/path/id', '/model/type/syscall/id'], min_allowed_time_diff=5, auto_include_flag=True, allow_missing_values_flag=True, output_log_line=True) analysis_context.register_component( new_match_id_value_combo_detector, component_name="NewMatchIdValueComboDetector") atom_filters.add_handler(new_match_id_value_combo_detector) from aminer.analysis.NewMatchPathValueDetector import NewMatchPathValueDetector new_match_path_value_detector = NewMatchPathValueDetector( analysis_context.aminer_config, ['/model/DailyCron/Job Number', '/model/IPAddresses/Username'], anomaly_event_handlers, auto_include_flag=False) analysis_context.register_component(new_match_path_value_detector, component_name="NewMatchPathValue") atom_filters.add_handler(new_match_path_value_detector) from aminer.analysis.MissingMatchPathValueDetector import MissingMatchPathValueDetector missing_match_path_value_detector = MissingMatchPathValueDetector( analysis_context.aminer_config, ['/model/DiskReport/Space'], anomaly_event_handlers, auto_include_flag=False, default_interval=2, realert_interval=5) analysis_context.register_component(missing_match_path_value_detector, component_name="MissingMatch") atom_filters.add_handler(missing_match_path_value_detector) from aminer.analysis.TimeCorrelationDetector import TimeCorrelationDetector time_correlation_detector = TimeCorrelationDetector( analysis_context.aminer_config, anomaly_event_handlers, 2, min_rule_attributes=1, max_rule_attributes=5, record_count_before_event=70000, output_log_line=True) analysis_context.register_component( time_correlation_detector, component_name="TimeCorrelationDetector") atom_filters.add_handler(time_correlation_detector) from aminer.analysis.TimeCorrelationViolationDetector import TimeCorrelationViolationDetector, CorrelationRule, EventClassSelector cron_job_announcement = CorrelationRule( 'CronJobAnnouncement', 5, 6, max_artefacts_a_for_single_b=1, artefact_match_parameters=[('/model/CronAnnouncement/JobNumber', '/model/CronExecution/JobNumber')]) a_class_selector = EventClassSelector('Announcement', [cron_job_announcement], None) b_class_selector = EventClassSelector('Execution', None, [cron_job_announcement]) rules = [ Rules.PathExistsMatchRule('/model/CronAnnouncement/Run', a_class_selector), Rules.PathExistsMatchRule('/model/CronExecution/Job', b_class_selector) ] time_correlation_violation_detector = TimeCorrelationViolationDetector( analysis_context.aminer_config, rules, anomaly_event_handlers) analysis_context.register_component( time_correlation_violation_detector, component_name="TimeCorrelationViolationDetector") atom_filters.add_handler(time_correlation_violation_detector) from aminer.events.DefaultMailNotificationEventHandler import DefaultMailNotificationEventHandler if DefaultMailNotificationEventHandler.CONFIG_KEY_MAIL_TARGET_ADDRESS in analysis_context.aminer_config.config_properties: mail_notification_handler = DefaultMailNotificationEventHandler( analysis_context) analysis_context.register_component(mail_notification_handler, component_name="MailHandler") anomaly_event_handlers.append(mail_notification_handler)
def build_analysis_pipeline(analysis_context): """ Define the function to create pipeline for parsing the log data. It has also to define an AtomizerFactory to instruct aminer how to process incoming data streams to create log atoms from them. """ date_format_string = b'%Y-%m-%d %H:%M:%S' cron = b' cron[' # Build the parsing model: service_children_disk_report = [ FixedDataModelElement('Space', b' Current Disk Data is: Filesystem Type Size Used Avail Use%'), DelimitedDataModelElement('Data', b'%'), AnyByteDataModelElement('Rest')] service_children_login_details = [ FixedDataModelElement('User/LoginDetails', b'User '), DelimitedDataModelElement('Username', b' '), FixedWordlistDataModelElement('Status', [b' logged in', b' logged out']), OptionalMatchModelElement('PastTime', SequenceModelElement('Time', [ FixedDataModelElement('Blank', b' '), DecimalIntegerValueModelElement('Minutes'), FixedDataModelElement('Ago', b' minutes ago.')]))] service_children_cron_job = [ DateTimeModelElement('DTM', date_format_string), FixedDataModelElement('UNameSpace1', b' '), DelimitedDataModelElement('UName', b' '), FixedDataModelElement('UNameSpace2', b' '), DelimitedDataModelElement('User', b' '), FixedDataModelElement('Cron', cron), DecimalIntegerValueModelElement('JobNumber'), FixedDataModelElement('Details', b']: Job `cron.daily` started.')] service_children_random_time = [FixedDataModelElement('Space', b'Random: '), DecimalIntegerValueModelElement('Random')] service_children_sensors = [SequenceModelElement('CPUTemp', [ FixedDataModelElement('FixedTemp', b'CPU Temp: '), DecimalIntegerValueModelElement('Temp'), FixedDataModelElement('Degrees', b'\xc2\xb0C')]), FixedDataModelElement('Space1', b', '), SequenceModelElement('CPUWorkload', [ FixedDataModelElement('FixedWorkload', b'CPU Workload: '), DecimalIntegerValueModelElement('Workload'), FixedDataModelElement('Percent', b'%')]), FixedDataModelElement('Space2', b', '), DateTimeModelElement('DTM', date_format_string)] service_children_user_ip_address = [ FixedDataModelElement('User/UserIPAddress', b'User '), DelimitedDataModelElement('Username', b' '), FixedDataModelElement('Action', b' changed IP address to '), IpAddressDataModelElement('IP')] service_children_cron_job_announcement = [ DateTimeModelElement('DTM', date_format_string), FixedDataModelElement('Space', b' '), DelimitedDataModelElement('UName', b' '), FixedDataModelElement('Cron', cron), DecimalIntegerValueModelElement('JobNumber'), FixedDataModelElement('Run', b']: Will run job `'), FixedWordlistDataModelElement('CronType', [b'cron.daily', b'cron.hourly', b'cron.monthly', b'cron.weekly']), FixedDataModelElement('StartTime', b'\' in 5 min.')] service_children_cron_job_execution = [ DateTimeModelElement('DTM', date_format_string), FixedDataModelElement('Space1', b' '), DelimitedDataModelElement('UName', b' '), FixedDataModelElement('Cron', cron), DecimalIntegerValueModelElement('JobNumber'), FixedDataModelElement('Job', b']: Job `'), FixedWordlistDataModelElement('CronType', [b'cron.daily', b'cron.hourly', b'cron.monthly', b'cron.weekly']), FixedDataModelElement('Started', b'\' started')] service_children_audit = [SequenceModelElement('path', [ FixedDataModelElement('type', b'type=PATH '), FixedDataModelElement('msg_audit', b'msg=audit('), DelimitedDataModelElement('msg', b':'), FixedDataModelElement('placeholder', b':'), DecimalIntegerValueModelElement('id'), FixedDataModelElement('item_string', b'): item='), DecimalIntegerValueModelElement('item'), FixedDataModelElement('name_string', b' name="'), DelimitedDataModelElement('name', b'"'), FixedDataModelElement('inode_string', b'" inode='), DecimalIntegerValueModelElement('inode'), FixedDataModelElement('dev_string', b' dev='), DelimitedDataModelElement('dev', b' '), FixedDataModelElement('mode_string', b' mode='), DecimalIntegerValueModelElement('mode', value_pad_type=DecimalIntegerValueModelElement.PAD_TYPE_ZERO), FixedDataModelElement('ouid_string', b' ouid='), DecimalIntegerValueModelElement('ouid'), FixedDataModelElement('ogid_string', b' ogid='), DecimalIntegerValueModelElement('ogid'), FixedDataModelElement('rdev_string', b' rdev='), DelimitedDataModelElement('rdev', b' '), FixedDataModelElement('nametype_string', b' nametype='), FixedWordlistDataModelElement('nametype', [b'NORMAL', b'ERROR'])]), SequenceModelElement('syscall', [ FixedDataModelElement('type', b'type=SYSCALL '), FixedDataModelElement('msg_audit', b'msg=audit('), DelimitedDataModelElement('msg', b':'), FixedDataModelElement('placeholder', b':'), DecimalIntegerValueModelElement('id'), FixedDataModelElement('arch_string', b'): arch='), DelimitedDataModelElement('arch', b' '), FixedDataModelElement('syscall_string', b' syscall='), DecimalIntegerValueModelElement('syscall'), FixedDataModelElement('success_string', b' success='), FixedWordlistDataModelElement('success', [b'yes', b'no']), FixedDataModelElement('exit_string', b' exit='), DecimalIntegerValueModelElement('exit'), AnyByteDataModelElement('remainding_data')])] service_children_parsing_model_element = [ DateTimeModelElement('DateTimeModelElement', b'Current DateTime: %d.%m.%Y %H:%M:%S'), DecimalFloatValueModelElement('DecimalFloatValueModelElement', value_sign_type='optional'), DecimalIntegerValueModelElement('DecimalIntegerValueModelElement', value_sign_type='optional', value_pad_type='blank'), SequenceModelElement('se', [ DelimitedDataModelElement('DelimitedDataModelElement', b';'), FixedDataModelElement('FixedDataModelElement', b';')])] # ElementValueBranchModelElement fixed_data_me1 = FixedDataModelElement("fixed1", b'match ') fixed_data_me2 = FixedDataModelElement("fixed2", b'fixed String') fixed_wordlist_data_model_element = FixedWordlistDataModelElement("wordlist", [b'data: ', b'string: ']) decimal_integer_value_model_element = DecimalIntegerValueModelElement("decimal") service_children_parsing_model_element.append( ElementValueBranchModelElement('ElementValueBranchModelElement', FirstMatchModelElement("first", [ SequenceModelElement("seq1", [fixed_data_me1, fixed_wordlist_data_model_element]), SequenceModelElement("seq2", [fixed_data_me1, fixed_wordlist_data_model_element, fixed_data_me2])]), "wordlist", {0: decimal_integer_value_model_element, 1: fixed_data_me2})) service_children_parsing_model_element.append(HexStringModelElement('HexStringModelElement')) service_children_parsing_model_element.append(SequenceModelElement('se2', [ FixedDataModelElement('FixedDataModelElement', b'Gateway IP-Address: '), IpAddressDataModelElement('IpAddressDataModelElement')])) import locale loc = locale.getlocale() if loc == (None, None): loc = ('en_US', 'utf8') service_children_parsing_model_element.append( MultiLocaleDateTimeModelElement('MultiLocaleDateTimeModelElement', [(b'%b %d %Y', None, '%s.%s' % loc)])) service_children_parsing_model_element.append( RepeatedElementDataModelElement('RepeatedElementDataModelElement', SequenceModelElement('SequenceModelElement', [ FixedDataModelElement('FixedDataModelElement', b'[drawn number]: '), DecimalIntegerValueModelElement('DecimalIntegerValueModelElement')]), 1)) service_children_parsing_model_element.append(VariableByteDataModelElement('VariableByteDataModelElement', b'-@#')) service_children_parsing_model_element.append(SequenceModelElement('se', [ WhiteSpaceLimitedDataModelElement('WhiteSpaceLimitedDataModelElement'), FixedDataModelElement('fixed', b' ')])) # The Base64StringModelElement must be just before the AnyByteDataModelElement to avoid unexpected Matches. service_children_parsing_model_element.append(Base64StringModelElement('Base64StringModelElement')) # The OptionalMatchModelElement must be paired with a FirstMatchModelElement because it accepts all data and thus no data gets # to the AnyByteDataModelElement. The AnyByteDataModelElement must be last, because all bytes are accepted. service_children_parsing_model_element.append( OptionalMatchModelElement('/', FirstMatchModelElement('FirstMatchModelElement//optional', [ FixedDataModelElement('FixedDataModelElement', b'The-searched-element-was-found!'), SequenceModelElement('se', [ FixedDataModelElement('FixedDME', b'Any:'), AnyByteDataModelElement('AnyByteDataModelElement')])]))) alphabet = b'ghijkl' service_children_ecd = [] for _, char in enumerate(alphabet): char = bytes([char]) service_children_ecd.append(FixedDataModelElement(char.decode(), char)) parsing_model = FirstMatchModelElement('model', [ SequenceModelElement('CronAnnouncement', service_children_cron_job_announcement), SequenceModelElement('CronExecution', service_children_cron_job_execution), SequenceModelElement('DailyCron', service_children_cron_job), SequenceModelElement('DiskReport', service_children_disk_report), SequenceModelElement('LoginDetails', service_children_login_details), DecimalIntegerValueModelElement('Random'), SequenceModelElement('RandomTime', service_children_random_time), SequenceModelElement('Sensors', service_children_sensors), SequenceModelElement('IPAddresses', service_children_user_ip_address), FirstMatchModelElement('type', service_children_audit), FirstMatchModelElement('ECD', service_children_ecd), FirstMatchModelElement('ParsingME', service_children_parsing_model_element)]) # Some generic imports. from aminer.analysis import AtomFilters # Create all global handler lists here and append the real handlers later on. # Use this filter to distribute all atoms to the analysis handlers. atom_filter = AtomFilters.SubhandlerFilter(None) from aminer.analysis.TimestampCorrectionFilters import SimpleMonotonicTimestampAdjust simple_monotonic_timestamp_adjust = SimpleMonotonicTimestampAdjust([atom_filter]) analysis_context.register_component(simple_monotonic_timestamp_adjust, component_name="SimpleMonotonicTimestampAdjust") from aminer.events.StreamPrinterEventHandler import StreamPrinterEventHandler from aminer.events.JsonConverterHandler import JsonConverterHandler stream_printer_event_handler = StreamPrinterEventHandler(analysis_context) json_converter_handler = JsonConverterHandler([stream_printer_event_handler], analysis_context) anomaly_event_handlers = [json_converter_handler] # Now define the AtomizerFactory using the model. A simple line based one is usually sufficient. from aminer.input.SimpleByteStreamLineAtomizerFactory import SimpleByteStreamLineAtomizerFactory analysis_context.atomizer_factory = SimpleByteStreamLineAtomizerFactory(parsing_model, [simple_monotonic_timestamp_adjust], anomaly_event_handlers) # Just report all unparsed atoms to the event handlers. from aminer.analysis.UnparsedAtomHandlers import SimpleUnparsedAtomHandler, VerboseUnparsedAtomHandler simple_unparsed_atom_handler = SimpleUnparsedAtomHandler(anomaly_event_handlers) atom_filter.add_handler(simple_unparsed_atom_handler, stop_when_handled_flag=False) analysis_context.register_component(simple_unparsed_atom_handler, component_name="SimpleUnparsedHandler") verbose_unparsed_atom_handler = VerboseUnparsedAtomHandler(anomaly_event_handlers, parsing_model) atom_filter.add_handler(verbose_unparsed_atom_handler, stop_when_handled_flag=True) analysis_context.register_component(verbose_unparsed_atom_handler, component_name="VerboseUnparsedHandler") from aminer.analysis.TimestampsUnsortedDetector import TimestampsUnsortedDetector timestamps_unsorted_detector = TimestampsUnsortedDetector(analysis_context.aminer_config, anomaly_event_handlers) atom_filter.add_handler(timestamps_unsorted_detector) analysis_context.register_component(timestamps_unsorted_detector, component_name="TimestampsUnsortedDetector") from aminer.analysis import Rules from aminer.analysis.AllowlistViolationDetector import AllowlistViolationDetector allowlist_rules = [ Rules.OrMatchRule([ Rules.AndMatchRule([ Rules.PathExistsMatchRule('/model/LoginDetails/PastTime/Time/Minutes'), Rules.NegationMatchRule(Rules.ValueMatchRule('/model/LoginDetails/Username', b'root')), Rules.DebugMatchRule(debug_match_result=True)]), Rules.AndMatchRule([ Rules.NegationMatchRule(Rules.PathExistsMatchRule('/model/LoginDetails/PastTime/Time/Minutes')), Rules.PathExistsMatchRule('/model/LoginDetails'), Rules.DebugMatchRule(debug_match_result=True)]), Rules.NegationMatchRule(Rules.PathExistsMatchRule('/model/LoginDetails'))])] # This rule list should trigger, when the line does not look like: User root (logged in, logged out) # or User 'username' (logged in, logged out) x minutes ago. allowlist_violation_detector = AllowlistViolationDetector(analysis_context.aminer_config, allowlist_rules, anomaly_event_handlers, output_log_line=True) analysis_context.register_component(allowlist_violation_detector, component_name="Allowlist") atom_filter.add_handler(allowlist_violation_detector) from aminer.analysis.ParserCount import ParserCount parser_count = ParserCount(analysis_context.aminer_config, None, anomaly_event_handlers, 10) analysis_context.register_component(parser_count, component_name="ParserCount") atom_filter.add_handler(parser_count) from aminer.analysis.EventTypeDetector import EventTypeDetector etd = EventTypeDetector(analysis_context.aminer_config, anomaly_event_handlers) analysis_context.register_component(etd, component_name="EventTypeDetector") atom_filter.add_handler(etd) from aminer.analysis.VariableTypeDetector import VariableTypeDetector vtd = VariableTypeDetector(analysis_context.aminer_config, anomaly_event_handlers, etd, silence_output_except_indicator=False, output_log_line=False, ignore_list=["/model/RandomTime"]) analysis_context.register_component(vtd, component_name="VariableTypeDetector") atom_filter.add_handler(vtd) from aminer.analysis.VariableCorrelationDetector import VariableCorrelationDetector vtd = VariableCorrelationDetector(analysis_context.aminer_config, anomaly_event_handlers, etd, disc_div_thres=0.5, ignore_list=["/model/RandomTime"]) analysis_context.register_component(vtd, component_name="VariableCorrelationDetector") atom_filter.add_handler(vtd) from aminer.analysis.EventCorrelationDetector import EventCorrelationDetector ecd = EventCorrelationDetector(analysis_context.aminer_config, anomaly_event_handlers, check_rules_flag=True, hypothesis_max_delta_time=1.0) analysis_context.register_component(ecd, component_name="EventCorrelationDetector") atom_filter.add_handler(ecd) from aminer.analysis.EventFrequencyDetector import EventFrequencyDetector efd = EventFrequencyDetector(analysis_context.aminer_config, anomaly_event_handlers, window_size=0.1) analysis_context.register_component(efd, component_name="EventFrequencyDetector") atom_filter.add_handler(efd) from aminer.analysis.EventSequenceDetector import EventSequenceDetector esd = EventSequenceDetector(analysis_context.aminer_config, anomaly_event_handlers, ['/model/ParsingME'], ignore_list=[ '/model/ECD/g', '/model/ECD/h', '/model/ECD/i', '/model/ECD/j', '/model/ECD/k', '/model/ECD/l', '/model/Random', '/model/RandomTime', '/model/DailyCron']) analysis_context.register_component(esd, component_name="EventSequenceDetector") atom_filter.add_handler(esd) from aminer.analysis.MatchFilter import MatchFilter match_filter = MatchFilter(analysis_context.aminer_config, ['/model/Random'], anomaly_event_handlers, target_value_list=[ 1, 10, 100], output_log_line=True) analysis_context.register_component(match_filter, component_name="MatchFilter") atom_filter.add_handler(match_filter) from aminer.analysis.NewMatchPathDetector import NewMatchPathDetector new_match_path_detector = NewMatchPathDetector(analysis_context.aminer_config, anomaly_event_handlers, auto_include_flag=True, output_log_line=True) analysis_context.register_component(new_match_path_detector, component_name="NewMatchPath") atom_filter.add_handler(new_match_path_detector) def tuple_transformation_function(match_value_list): """Only allow output of the EnhancedNewMatchPathValueComboDetector after every 10th element.""" extra_data = enhanced_new_match_path_value_combo_detector.known_values_dict.get(tuple(match_value_list)) if extra_data is not None: mod = 10 if (extra_data[2] + 1) % mod == 0: enhanced_new_match_path_value_combo_detector.auto_include_flag = False else: enhanced_new_match_path_value_combo_detector.auto_include_flag = True return match_value_list from aminer.analysis.EnhancedNewMatchPathValueComboDetector import EnhancedNewMatchPathValueComboDetector enhanced_new_match_path_value_combo_detector = EnhancedNewMatchPathValueComboDetector(analysis_context.aminer_config, [ '/model/DailyCron/UName', '/model/DailyCron/JobNumber'], anomaly_event_handlers, auto_include_flag=True, tuple_transformation_function=tuple_transformation_function, output_log_line=True) analysis_context.register_component(enhanced_new_match_path_value_combo_detector, component_name="EnhancedNewValueCombo") atom_filter.add_handler(enhanced_new_match_path_value_combo_detector) import re ip_match_action = Rules.EventGenerationMatchAction( "Analysis.Rules.IPv4InRFC1918MatchRule", "Private IP address occurred!", anomaly_event_handlers) vdmt = Rules.ValueDependentModuloTimeMatchRule(None, 3, ["/model/ECD/j", "/model/ECD/k", "/model/ECD/l"], {b"e": [0, 2.95]}, [0, 3]) mt = Rules.ModuloTimeMatchRule(None, 3, 0, 3, None) time_allowlist_rules = [ Rules.AndMatchRule([ Rules.ParallelMatchRule([ Rules.ValueDependentDelegatedMatchRule([ '/model/ECD/g', '/model/ECD/h', '/model/ECD/i', '/model/ECD/j', '/model/ECD/k', '/model/ECD/l'], { (b"a",): mt, (b"b",): mt, (b"c",): mt, (b"d",): vdmt, (b"e",): vdmt, (b"f",): vdmt, None: mt}, mt), Rules.IPv4InRFC1918MatchRule("/model/ParsingME/se2/IpAddressDataModelElement", ip_match_action), Rules.DebugHistoryMatchRule(debug_match_result=True) ]), # IP addresses 8.8.8.8, 8.8.4.4 and 10.0.0.0 - 10.255.255.255 are not allowed Rules.NegationMatchRule(Rules.ValueListMatchRule("/model/ParsingME/se2/IpAddressDataModelElement", [134744072, 134743044])), Rules.NegationMatchRule(Rules.ValueRangeMatchRule("/model/ParsingME/se2/IpAddressDataModelElement", 167772160, 184549375)), Rules.NegationMatchRule(Rules.StringRegexMatchRule("/model/type/syscall/success", re.compile(b"^no$"))) ]) ] time_allowlist_violation_detector = AllowlistViolationDetector( analysis_context.aminer_config, time_allowlist_rules, anomaly_event_handlers, output_log_line=True) analysis_context.register_component(time_allowlist_violation_detector, component_name="TimeAllowlist") atom_filter.add_handler(time_allowlist_violation_detector) from aminer.analysis.HistogramAnalysis import HistogramAnalysis, LinearNumericBinDefinition, ModuloTimeBinDefinition, \ PathDependentHistogramAnalysis modulo_time_bin_definition = ModuloTimeBinDefinition(86400, 3600, 0, 1, 24, True) linear_numeric_bin_definition = LinearNumericBinDefinition(50, 5, 20, True) histogram_analysis = HistogramAnalysis(analysis_context.aminer_config, [ ('/model/RandomTime/Random', modulo_time_bin_definition), ('/model/Random', linear_numeric_bin_definition)], 10, anomaly_event_handlers, output_log_line=True) analysis_context.register_component(histogram_analysis, component_name="HistogramAnalysis") atom_filter.add_handler(histogram_analysis) path_dependent_histogram_analysis = PathDependentHistogramAnalysis( analysis_context.aminer_config, '/model/RandomTime', modulo_time_bin_definition, 10, anomaly_event_handlers, output_log_line=True) analysis_context.register_component(path_dependent_histogram_analysis, component_name="PathDependentHistogramAnalysis") atom_filter.add_handler(path_dependent_histogram_analysis) from aminer.analysis.MatchValueAverageChangeDetector import MatchValueAverageChangeDetector match_value_average_change_detector = MatchValueAverageChangeDetector(analysis_context.aminer_config, anomaly_event_handlers, None, [ '/model/Random'], 100, 10, output_log_line=True) analysis_context.register_component(match_value_average_change_detector, component_name="MatchValueAverageChange") atom_filter.add_handler(match_value_average_change_detector) import sys from aminer.analysis.MatchValueStreamWriter import MatchValueStreamWriter match_value_stream_writer = MatchValueStreamWriter( sys.stdout, ['/model/Sensors/CPUTemp', '/model/Sensors/CPUWorkload', '/model/Sensors/DTM'], b';', b'') analysis_context.register_component(match_value_stream_writer, component_name="MatchValueStreamWriter") atom_filter.add_handler(match_value_stream_writer) from aminer.analysis.NewMatchPathValueComboDetector import NewMatchPathValueComboDetector new_match_path_value_combo_detector = NewMatchPathValueComboDetector( analysis_context.aminer_config, ['/model/IPAddresses/Username', '/model/IPAddresses/IP'], anomaly_event_handlers, output_log_line=True) analysis_context.register_component(new_match_path_value_combo_detector, component_name="NewMatchPathValueCombo") atom_filter.add_handler(new_match_path_value_combo_detector) from aminer.analysis.NewMatchIdValueComboDetector import NewMatchIdValueComboDetector new_match_id_value_combo_detector = NewMatchIdValueComboDetector(analysis_context.aminer_config, [ '/model/type/path/name', '/model/type/syscall/syscall'], anomaly_event_handlers, id_path_list=[ '/model/type/path/id', '/model/type/syscall/id'], min_allowed_time_diff=5, auto_include_flag=True, allow_missing_values_flag=True, output_log_line=True) analysis_context.register_component(new_match_id_value_combo_detector, component_name="NewMatchIdValueComboDetector") atom_filter.add_handler(new_match_id_value_combo_detector) from aminer.analysis.NewMatchPathValueDetector import NewMatchPathValueDetector new_match_path_value_detector = NewMatchPathValueDetector(analysis_context.aminer_config, [ '/model/DailyCron/JobNumber', '/model/IPAddresses/Username'], anomaly_event_handlers, auto_include_flag=True, output_log_line=True) analysis_context.register_component(new_match_path_value_detector, component_name="NewMatchPathValue") atom_filter.add_handler(new_match_path_value_detector) from aminer.analysis.MissingMatchPathValueDetector import MissingMatchPathValueDetector missing_match_path_value_detector = MissingMatchPathValueDetector( analysis_context.aminer_config, ['/model/DiskReport/Space'], anomaly_event_handlers, auto_include_flag=True, default_interval=2, realert_interval=5, output_log_line=True) analysis_context.register_component(missing_match_path_value_detector, component_name="MissingMatch") atom_filter.add_handler(missing_match_path_value_detector) from aminer.analysis.TimeCorrelationDetector import TimeCorrelationDetector time_correlation_detector = TimeCorrelationDetector( analysis_context.aminer_config, anomaly_event_handlers, 2, min_rule_attributes=1, max_rule_attributes=5, record_count_before_event=10000, output_log_line=True) analysis_context.register_component(time_correlation_detector, component_name="TimeCorrelationDetector") atom_filter.add_handler(time_correlation_detector) from aminer.analysis.TimeCorrelationViolationDetector import TimeCorrelationViolationDetector, CorrelationRule, EventClassSelector cron_job_announcement = CorrelationRule('CronJobAnnouncement', 5, 6, max_artefacts_a_for_single_b=1, artefact_match_parameters=[ ('/model/CronAnnouncement/JobNumber', '/model/CronExecution/JobNumber')]) a_class_selector = EventClassSelector('Announcement', [cron_job_announcement], None) b_class_selector = EventClassSelector('Execution', None, [cron_job_announcement]) rules = [Rules.PathExistsMatchRule('/model/CronAnnouncement/Run', a_class_selector), Rules.PathExistsMatchRule('/model/CronExecution/Job', b_class_selector)] time_correlation_violation_detector = TimeCorrelationViolationDetector(analysis_context.aminer_config, rules, anomaly_event_handlers, output_log_line=True) analysis_context.register_component(time_correlation_violation_detector, component_name="TimeCorrelationViolationDetector") atom_filter.add_handler(time_correlation_violation_detector)
def build_analysis_pipeline(analysis_context): """ Define the function to create pipeline for parsing the log data. It has also to define an AtomizerFactory to instruct aminer how to process incoming data streams to create log atoms from them. """ date_format_string = b'%Y-%m-%d %H:%M:%S' cron = b' cron[' # Build the parsing model: service_children_disk_report = [ FixedDataModelElement( 'Space', b' Current Disk Data is: Filesystem Type Size Used Avail Use%' ), DelimitedDataModelElement('Data', b'%'), AnyByteDataModelElement('Rest') ] service_children_login_details = [ FixedDataModelElement('User', b'User '), DelimitedDataModelElement('Username', b' '), FixedWordlistDataModelElement('Status', [b' logged in', b' logged out']), OptionalMatchModelElement( 'PastTime', SequenceModelElement('Time', [ FixedDataModelElement('Blank', b' '), DecimalIntegerValueModelElement('Minutes'), FixedDataModelElement('Ago', b' minutes ago.') ])) ] service_children_cron_job = [ DateTimeModelElement('DTM', date_format_string), FixedDataModelElement('UNameSpace1', b' '), DelimitedDataModelElement('UName', b' '), FixedDataModelElement('UNameSpace2', b' '), DelimitedDataModelElement('User', b' '), FixedDataModelElement('Cron', cron), DecimalIntegerValueModelElement('JobNumber'), FixedDataModelElement('Details', b']: Job `cron.daily` started.') ] service_children_random_time = [ FixedDataModelElement('Space', b'Random: '), DecimalIntegerValueModelElement('Random') ] service_children_sensors = [ SequenceModelElement('CPUTemp', [ FixedDataModelElement('FixedTemp', b'CPU Temp: '), DecimalIntegerValueModelElement('Temp'), FixedDataModelElement('Degrees', b'\xc2\xb0C') ]), FixedDataModelElement('Space1', b', '), SequenceModelElement('CPUWorkload', [ FixedDataModelElement('Fixed Workload', b'CPU Workload: '), DecimalIntegerValueModelElement('Workload'), FixedDataModelElement('Percent', b'%') ]), FixedDataModelElement('Space2', b', '), DateTimeModelElement('DTM', date_format_string) ] service_children_user_ip_address = [ FixedDataModelElement('User', b'User '), DelimitedDataModelElement('Username', b' '), FixedDataModelElement('Action', b' changed IP address to '), IpAddressDataModelElement('IP') ] service_children_cron_job_announcement = [ DateTimeModelElement('DTM', date_format_string), FixedDataModelElement('Space', b' '), DelimitedDataModelElement('UName', b' '), FixedDataModelElement('Cron', cron), DecimalIntegerValueModelElement('JobNumber'), FixedDataModelElement('Run', b']: Will run job `'), FixedWordlistDataModelElement( 'CronType', [b'cron.daily', b'cron.hourly', b'cron.monthly', b'cron.weekly']), FixedDataModelElement('Start Time', b'\' in 5 min.') ] service_children_cron_job_execution = [ DateTimeModelElement('DTM', date_format_string), FixedDataModelElement('Space1', b' '), DelimitedDataModelElement('UName', b' '), FixedDataModelElement('Cron', cron), DecimalIntegerValueModelElement('JobNumber'), FixedDataModelElement('Job', b']: Job `'), FixedWordlistDataModelElement( 'CronType', [b'cron.daily', b'cron.hourly', b'cron.monthly', b'cron.weekly']), FixedDataModelElement('Started', b'\' started') ] service_children_parsing_model_element = [ DateTimeModelElement('DateTimeModelElement', b'Current DateTime: %d.%m.%Y %H:%M:%S'), DecimalFloatValueModelElement('DecimalFloatValueModelElement', value_sign_type='optional'), DecimalIntegerValueModelElement('DecimalIntegerValueModelElement', value_sign_type='optional', value_pad_type='blank'), SequenceModelElement('', [ DelimitedDataModelElement('DelimitedDataModelElement', b';'), FixedDataModelElement('FixedDataModelElement', b';') ]) ] # ElementValueBranchModelElement fixed_data_me1 = FixedDataModelElement("fixed1", b'match ') fixed_data_me2 = FixedDataModelElement("fixed2", b'fixed String') fixed_wordlist_data_model_element = FixedWordlistDataModelElement( "wordlist", [b'data: ', b'string: ']) decimal_integer_value_model_element = DecimalIntegerValueModelElement( "decimal") service_children_parsing_model_element.append( ElementValueBranchModelElement( 'ElementValueBranchModelElement', FirstMatchModelElement("first", [ SequenceModelElement( "seq1", [fixed_data_me1, fixed_wordlist_data_model_element]), SequenceModelElement("seq2", [ fixed_data_me1, fixed_wordlist_data_model_element, fixed_data_me2 ]) ]), "wordlist", { 0: decimal_integer_value_model_element, 1: fixed_data_me2 })) service_children_parsing_model_element.append( HexStringModelElement('HexStringModelElement')) service_children_parsing_model_element.append( SequenceModelElement('', [ FixedDataModelElement('FixedDataModelElement', b'Gateway IP-Address: '), IpAddressDataModelElement('IpAddressDataModelElement') ])) service_children_parsing_model_element.append( MultiLocaleDateTimeModelElement('MultiLocaleDateTimeModelElement', [(b'%b %d %Y', "de_AT.utf8", None)])) service_children_parsing_model_element.append( RepeatedElementDataModelElement( 'RepeatedElementDataModelElement', SequenceModelElement('SequenceModelElement', [ FixedDataModelElement('FixedDataModelElement', b'drawn number: '), DecimalIntegerValueModelElement( 'DecimalIntegerValueModelElement') ]), 1)) service_children_parsing_model_element.append( VariableByteDataModelElement('VariableByteDataModelElement', b'-@#')) service_children_parsing_model_element.append( SequenceModelElement('', [ WhiteSpaceLimitedDataModelElement( 'WhiteSpaceLimitedDataModelElement'), FixedDataModelElement('', b' ') ])) # The Base64StringModelElement must be just before the AnyByteDataModelElement to avoid unexpected Matches. service_children_parsing_model_element.append( Base64StringModelElement('Base64StringModelElement')) # The OptionalMatchModelElement must be paired with a FirstMatchModelElement because it accepts all data and thus no data gets # to the AnyByteDataModelElement. The AnyByteDataModelElement must be last, because all bytes are accepted. service_children_parsing_model_element.append( OptionalMatchModelElement( 'OptionalMatchModelElement', FirstMatchModelElement('FirstMatchModelElement', [ FixedDataModelElement('FixedDataModelElement', b'The-searched-element-was-found!'), AnyByteDataModelElement('AnyByteDataModelElement') ]))) parsing_model = FirstMatchModelElement('model', [ SequenceModelElement('CronAnnouncement', service_children_cron_job_announcement), SequenceModelElement('CronExecution', service_children_cron_job_execution), SequenceModelElement('DailyCron', service_children_cron_job), SequenceModelElement('DiskReport', service_children_disk_report), SequenceModelElement('LoginDetails', service_children_login_details), DecimalIntegerValueModelElement('Random'), SequenceModelElement('RandomTime', service_children_random_time), SequenceModelElement('Sensors', service_children_sensors), SequenceModelElement('IPAddresses', service_children_user_ip_address), FirstMatchModelElement('ParsingME', service_children_parsing_model_element) ]) # Some generic imports. from aminer.analysis import AtomFilters # Create all global handler lists here and append the real handlers # later on. # Use this filter to distribute all atoms to the analysis handlers. atom_filter = AtomFilters.SubhandlerFilter(None) from aminer.analysis.TimestampCorrectionFilters import SimpleMonotonicTimestampAdjust simple_monotonic_timestamp_adjust = SimpleMonotonicTimestampAdjust( [atom_filter]) analysis_context.register_component( simple_monotonic_timestamp_adjust, component_name="SimpleMonotonicTimestampAdjust") from aminer.events.StreamPrinterEventHandler import StreamPrinterEventHandler stream_printer_event_handler = StreamPrinterEventHandler(analysis_context) from aminer.events.SyslogWriterEventHandler import SyslogWriterEventHandler syslog_event_handler = SyslogWriterEventHandler(analysis_context) from aminer.events.DefaultMailNotificationEventHandler import DefaultMailNotificationEventHandler if DefaultMailNotificationEventHandler.CONFIG_KEY_MAIL_TARGET_ADDRESS in analysis_context.aminer_config.config_properties: mail_notification_handler = DefaultMailNotificationEventHandler( analysis_context) analysis_context.register_component(mail_notification_handler, component_name="MailHandler") anomaly_event_handlers = [ stream_printer_event_handler, syslog_event_handler, mail_notification_handler ] # Now define the AtomizerFactory using the model. A simple line based one is usually sufficient. from aminer.input.SimpleByteStreamLineAtomizerFactory import SimpleByteStreamLineAtomizerFactory analysis_context.atomizer_factory = SimpleByteStreamLineAtomizerFactory( parsing_model, [simple_monotonic_timestamp_adjust], anomaly_event_handlers) # Just report all unparsed atoms to the event handlers. from aminer.analysis.UnparsedAtomHandlers import SimpleUnparsedAtomHandler simple_unparsed_atom_handler = SimpleUnparsedAtomHandler( anomaly_event_handlers) atom_filter.add_handler(simple_unparsed_atom_handler, stop_when_handled_flag=True) analysis_context.register_component(simple_unparsed_atom_handler, component_name="UnparsedHandler") from aminer.analysis.TimestampsUnsortedDetector import TimestampsUnsortedDetector timestamps_unsorted_detector = TimestampsUnsortedDetector( analysis_context.aminer_config, anomaly_event_handlers) atom_filter.add_handler(timestamps_unsorted_detector) analysis_context.register_component( timestamps_unsorted_detector, component_name="TimestampsUnsortedDetector") from aminer.analysis import Rules from aminer.analysis.AllowlistViolationDetector import AllowlistViolationDetector allowlist_rules = [ Rules.OrMatchRule([ Rules.AndMatchRule([ Rules.PathExistsMatchRule( '/model/LoginDetails/PastTime/Time/Minutes'), Rules.NegationMatchRule( Rules.ValueMatchRule('/model/LoginDetails/Username', b'root')) ]), Rules.AndMatchRule([ Rules.NegationMatchRule( Rules.PathExistsMatchRule( '/model/LoginDetails/PastTime/Time/Minutes')), Rules.PathExistsMatchRule('/model/LoginDetails') ]), Rules.NegationMatchRule( Rules.PathExistsMatchRule('/model/LoginDetails')) ]) ] # This rule list should trigger, when the line does not look like: User root (logged in, logged out) # or User 'username' (logged in, logged out) x minutes ago. allowlist_violation_detector = AllowlistViolationDetector( analysis_context.aminer_config, allowlist_rules, anomaly_event_handlers) analysis_context.register_component(allowlist_violation_detector, component_name="Allowlist") atom_filter.add_handler(allowlist_violation_detector) from aminer.analysis.NewMatchPathDetector import NewMatchPathDetector new_match_path_detector = NewMatchPathDetector( analysis_context.aminer_config, anomaly_event_handlers, auto_include_flag=True) analysis_context.register_component(new_match_path_detector, component_name="NewMatchPath") atom_filter.add_handler(new_match_path_detector) def tuple_transformation_function(match_value_list): """Only allow output of the EnhancedNewMatchPathValueComboDetector after every 10000th element.""" extra_data = enhanced_new_match_path_value_combo_detector.known_values_dict.get( tuple(match_value_list)) if extra_data is not None: mod = 10000 if (extra_data[2] + 1) % mod == 0: enhanced_new_match_path_value_combo_detector.auto_include_flag = False else: enhanced_new_match_path_value_combo_detector.auto_include_flag = True return match_value_list from aminer.analysis.EnhancedNewMatchPathValueComboDetector import EnhancedNewMatchPathValueComboDetector enhanced_new_match_path_value_combo_detector = EnhancedNewMatchPathValueComboDetector( analysis_context.aminer_config, ['/model/DailyCron/UName', '/model/DailyCron/JobNumber'], anomaly_event_handlers, auto_include_flag=True, tuple_transformation_function=tuple_transformation_function) analysis_context.register_component( enhanced_new_match_path_value_combo_detector, component_name="EnhancedNewValueCombo") atom_filter.add_handler(enhanced_new_match_path_value_combo_detector) from aminer.analysis.HistogramAnalysis import HistogramAnalysis, LinearNumericBinDefinition, ModuloTimeBinDefinition, \ PathDependentHistogramAnalysis modulo_time_bin_definition = ModuloTimeBinDefinition( 86400, 3600, 0, 1, 24, True) linear_numeric_bin_definition = LinearNumericBinDefinition(50, 5, 20, True) histogram_analysis = HistogramAnalysis( analysis_context.aminer_config, [('/model/RandomTime/Random', modulo_time_bin_definition), ('/model/Random', linear_numeric_bin_definition)], 10, anomaly_event_handlers) analysis_context.register_component(histogram_analysis, component_name="HistogramAnalysis") atom_filter.add_handler(histogram_analysis) path_dependent_histogram_analysis = PathDependentHistogramAnalysis( analysis_context.aminer_config, '/model/RandomTime', modulo_time_bin_definition, 10, anomaly_event_handlers) analysis_context.register_component( path_dependent_histogram_analysis, component_name="PathDependentHistogramAnalysis") atom_filter.add_handler(path_dependent_histogram_analysis) from aminer.analysis.MatchValueAverageChangeDetector import MatchValueAverageChangeDetector match_value_average_change_detector = MatchValueAverageChangeDetector( analysis_context.aminer_config, anomaly_event_handlers, None, ['/model/Random'], 100, 10) analysis_context.register_component( match_value_average_change_detector, component_name="MatchValueAverageChange") atom_filter.add_handler(match_value_average_change_detector) import sys from aminer.analysis.MatchValueStreamWriter import MatchValueStreamWriter match_value_stream_writer = MatchValueStreamWriter(sys.stdout, [ '/model/Sensors/CPUTemp', '/model/Sensors/CPUWorkload', '/model/Sensors/DTM' ], b';', b'') analysis_context.register_component( match_value_stream_writer, component_name="MatchValueStreamWriter") atom_filter.add_handler(match_value_stream_writer) from aminer.analysis.NewMatchPathValueComboDetector import NewMatchPathValueComboDetector new_match_path_value_combo_detector = NewMatchPathValueComboDetector( analysis_context.aminer_config, ['/model/IPAddresses/Username', '/model/IPAddresses/IP'], anomaly_event_handlers, auto_include_flag=True) analysis_context.register_component( new_match_path_value_combo_detector, component_name="NewMatchPathValueCombo") atom_filter.add_handler(new_match_path_value_combo_detector) from aminer.analysis.NewMatchPathValueDetector import NewMatchPathValueDetector new_match_path_value_detector = NewMatchPathValueDetector( analysis_context.aminer_config, ['/model/DailyCron/JobNumber', '/model/IPAddresses/Username'], anomaly_event_handlers, auto_include_flag=True) analysis_context.register_component(new_match_path_value_detector, component_name="NewMatchPathValue") atom_filter.add_handler(new_match_path_value_detector) from aminer.analysis.MissingMatchPathValueDetector import MissingMatchPathValueDetector missing_match_path_value_detector = MissingMatchPathValueDetector( analysis_context.aminer_config, ['/model/DiskReport/Space'], anomaly_event_handlers, auto_include_flag=True, default_interval=2, realert_interval=5) analysis_context.register_component(missing_match_path_value_detector, component_name="MissingMatch") atom_filter.add_handler(missing_match_path_value_detector) from aminer.analysis.TimeCorrelationDetector import TimeCorrelationDetector time_correlation_detector = TimeCorrelationDetector( analysis_context.aminer_config, anomaly_event_handlers, 2, min_rule_attributes=1, max_rule_attributes=5, record_count_before_event=70000, output_log_line=True) analysis_context.register_component( time_correlation_detector, component_name="TimeCorrelationDetector") atom_filter.add_handler(time_correlation_detector) from aminer.analysis.TimeCorrelationViolationDetector import TimeCorrelationViolationDetector, CorrelationRule, EventClassSelector cron_job_announcement = CorrelationRule( 'CronJobAnnouncement', 5, 6, max_artefacts_a_for_single_b=1, artefact_match_parameters=[('/model/CronAnnouncement/JobNumber', '/model/CronExecution/JobNumber')]) a_class_selector = EventClassSelector('Announcement', [cron_job_announcement], None) b_class_selector = EventClassSelector('Execution', None, [cron_job_announcement]) rules = [ Rules.PathExistsMatchRule('/model/CronAnnouncement/Run', a_class_selector), Rules.PathExistsMatchRule('/model/CronExecution/Job', b_class_selector) ] time_correlation_violation_detector = TimeCorrelationViolationDetector( analysis_context.aminer_config, rules, anomaly_event_handlers) analysis_context.register_component( time_correlation_violation_detector, component_name="TimeCorrelationViolationDetector") atom_filter.add_handler(time_correlation_violation_detector)
def build_analysis_pipeline(analysis_context): """ Define the function to create pipeline for parsing the log data. It has also to define an AtomizerFactory to instruct aminer how to process incoming data streams to create log atoms from them. """ # Build the parsing model: from aminer.parsing.SequenceModelElement import SequenceModelElement import ApacheAccessModel apache_access_model = ApacheAccessModel.get_model() parsing_model = SequenceModelElement('model', [apache_access_model]) # Some generic imports. from aminer.analysis import AtomFilters # Create all global handler lists here and append the real handlers # later on. # Use this filter to distribute all atoms to the analysis handlers. atom_filter = AtomFilters.SubhandlerFilter(None) anomaly_event_handlers = [] # Now define the AtomizerFactory using the model. A simple line # based one is usually sufficient. from aminer.input.SimpleByteStreamLineAtomizerFactory import SimpleByteStreamLineAtomizerFactory analysis_context.atomizer_factory = SimpleByteStreamLineAtomizerFactory( parsing_model, [atom_filter], anomaly_event_handlers, default_timestamp_paths='/model/accesslog/time') # Just report all unparsed atoms to the event handlers. from aminer.input.SimpleUnparsedAtomHandler import SimpleUnparsedAtomHandler atom_filter.add_handler(SimpleUnparsedAtomHandler(anomaly_event_handlers), stop_when_handled_flag=True) from aminer.analysis.NewMatchPathDetector import NewMatchPathDetector new_match_path_detector = NewMatchPathDetector( analysis_context.aminer_config, anomaly_event_handlers, auto_include_flag=learn_mode) analysis_context.register_component(new_match_path_detector, component_name=None) atom_filter.add_handler(new_match_path_detector) # Check if status-code changed from aminer.analysis.NewMatchPathValueDetector import NewMatchPathValueDetector new_match_path_value_detector = NewMatchPathValueDetector( analysis_context.aminer_config, ["/model/accesslog/status"], anomaly_event_handlers, auto_include_flag=learn_mode) analysis_context.register_component(new_match_path_value_detector, component_name=None) atom_filter.add_handler(new_match_path_value_detector) # Check if HTTP-Method for a HTTP-Request has changed from aminer.analysis.NewMatchPathValueComboDetector import NewMatchPathValueComboDetector new_match_path_value_combo_detector = NewMatchPathValueComboDetector( analysis_context.aminer_config, ["/model/accesslog/request", "/model/accesslog/method"], anomaly_event_handlers, auto_include_flag=learn_mode) analysis_context.register_component(new_match_path_value_combo_detector, component_name=None) atom_filter.add_handler(new_match_path_value_combo_detector) # Check if HTTP-Statuscode for a HTTP-Request has changed new_match_path_value_combo_detector2 = NewMatchPathValueComboDetector( analysis_context.aminer_config, ["/model/accesslog/request", "/model/accesslog/status"], anomaly_event_handlers, auto_include_flag=learn_mode) analysis_context.register_component(new_match_path_value_combo_detector2, component_name=None) atom_filter.add_handler(new_match_path_value_combo_detector2) # Add stdout stream printing for debugging, tuning. from aminer.events.StreamPrinterEventHandler import StreamPrinterEventHandler anomaly_event_handlers.append(StreamPrinterEventHandler(analysis_context))
def build_analysis_pipeline(analysis_context): """ Define the function to create pipeline for parsing the log data. It has also to define an AtomizerFactory to instruct aminer how to process incoming data streams to create log atoms from them. """ # Build the parsing model: from aminer.parsing.FirstMatchModelElement import FirstMatchModelElement from aminer.parsing.SequenceModelElement import SequenceModelElement from aminer.parsing.DateTimeModelElement import DateTimeModelElement from aminer.parsing.FixedDataModelElement import FixedDataModelElement from aminer.parsing.DelimitedDataModelElement import DelimitedDataModelElement from aminer.parsing.AnyByteDataModelElement import AnyByteDataModelElement service_children_disk_upgrade = [ DateTimeModelElement('DTM', b'%Y-%m-%d %H:%M:%S'), FixedDataModelElement('UNameSpace1', b' '), DelimitedDataModelElement('UName', b' '), FixedDataModelElement('UNameSpace2', b' '), DelimitedDataModelElement('User', b' '), FixedDataModelElement('HDRepair', b' System rebooted for hard disk upgrade')] service_children_home_path = [ FixedDataModelElement('Pwd', b'The Path of the home directory shown by pwd of the user '), DelimitedDataModelElement('Username', b' '), FixedDataModelElement('Is', b' is: '), AnyByteDataModelElement('Path')] parsing_model = FirstMatchModelElement('model', [ SequenceModelElement('DiskUpgrade', service_children_disk_upgrade), SequenceModelElement('HomePath', service_children_home_path)]) # Some generic imports. from aminer.analysis import AtomFilters # Create all global handler lists here and append the real handlers later on. # Use this filter to distribute all atoms to the analysis handlers. atom_filter = AtomFilters.SubhandlerFilter(None) from aminer.events.StreamPrinterEventHandler import StreamPrinterEventHandler stream_printer_event_handler = StreamPrinterEventHandler(analysis_context) anomaly_event_handlers = [stream_printer_event_handler] # Now define the AtomizerFactory using the model. A simple line based one is usually sufficient. from aminer.input.SimpleByteStreamLineAtomizerFactory import SimpleByteStreamLineAtomizerFactory analysis_context.atomizer_factory = SimpleByteStreamLineAtomizerFactory(parsing_model, [atom_filter], anomaly_event_handlers) # Just report all unparsed atoms to the event handlers. from aminer.input.SimpleUnparsedAtomHandler import SimpleUnparsedAtomHandler simple_unparsed_atom_handler = SimpleUnparsedAtomHandler(anomaly_event_handlers) atom_filter.add_handler(simple_unparsed_atom_handler, stop_when_handled_flag=True) analysis_context.register_component(simple_unparsed_atom_handler, component_name="UnparsedHandler") from aminer.analysis.NewMatchPathDetector import NewMatchPathDetector new_match_path_detector = NewMatchPathDetector(analysis_context.aminer_config, anomaly_event_handlers, auto_include_flag=True) analysis_context.register_component(new_match_path_detector, component_name="NewPath") atom_filter.add_handler(new_match_path_detector) from aminer.analysis.NewMatchPathValueComboDetector import NewMatchPathValueComboDetector new_match_path_value_combo_detector = NewMatchPathValueComboDetector(analysis_context.aminer_config, [ '/model/HomePath/Username', '/model/HomePath/Path'], anomaly_event_handlers, auto_include_flag=True) analysis_context.register_component(new_match_path_value_combo_detector, component_name="NewValueCombo") atom_filter.add_handler(new_match_path_value_combo_detector) # Include the e-mail notification handler only if the configuration parameter was set. from aminer.events.DefaultMailNotificationEventHandler import DefaultMailNotificationEventHandler if DefaultMailNotificationEventHandler.CONFIG_KEY_MAIL_TARGET_ADDRESS in analysis_context.aminer_config.config_properties: mail_notification_handler = DefaultMailNotificationEventHandler(analysis_context) analysis_context.register_component(mail_notification_handler, component_name="MailHandler") anomaly_event_handlers.append(mail_notification_handler)
def build_analysis_pipeline(analysis_context): """Define the function to create pipeline for parsing the log data. It has also to define an AtomizerFactory to instruct AMiner how to process incoming data streams to create log atoms from them.""" # skipcq: PYL-W0611 import importlib # skipcq: PYL-W0611 import configparser # skipcq: PYL-W0611 import sys # import json # from pprint import pprint parserModelDict = {} start = None wscount = 0 whitespace_str = b' ' # We might be able to remove this and us it like the config_properties # skipcq: PYL-W0603 global yamldata for item in yamldata['Parser']: if item['id'] == 'START': start = item continue if item['type'].endswith('ModelElement') and item['id'] != 'START': func = getattr(__import__("aminer.parsing", fromlist=[item['type']]), item['type']) if 'args' in item: if isinstance(item['args'], list): # encode string to bytearray for j in range(len(item['args'])): item['args'][j] = item['args'][j].encode() parserModelDict[item['id']] = func(item['name'], item['args']) else: parserModelDict[item['id']] = func(item['name'], item['args'].encode()) else: parserModelDict[item['id']] = func(item['name']) else: # skipcq: PTC-W0034 func = getattr(__import__(item['type']), 'get_model') parserModelDict[item['id']] = func() argslist = [] if start['type'].endswith('ModelElement'): # skipcq: PTC-W0034 func = getattr(__import__("aminer.parsing", fromlist=[start['type']]), start['type']) else: # skipcq: PTC-W0034 func = getattr(__import__(start['type']), 'get_model') if 'args' in start: if isinstance(start['args'], list): for i in start['args']: if i == 'WHITESPACE': from aminer.parsing import FixedDataModelElement sp = 'sp%d' % wscount argslist.append(FixedDataModelElement(sp, whitespace_str)) wscount += 1 else: argslist.append(parserModelDict[i]) parsing_model = func(start['name'], argslist) else: parsing_model = func(start['name'], [parserModelDict[start['args']]]) else: parsing_model = func() # Some generic imports. from aminer.analysis import AtomFilters # Create all global handler lists here and append the real handlers # later on. # Use this filter to distribute all atoms to the analysis handlers. atomFilter = AtomFilters.SubhandlerFilter(None) anomaly_event_handlers = [] # Now define the AtomizerFactory using the model. A simple line # based one is usually sufficient. from aminer.input import SimpleByteStreamLineAtomizerFactory if yamldata['Input']['MultiSource'] is True: from aminer.input import SimpleMultisourceAtomSync analysis_context.atomizer_factory = SimpleByteStreamLineAtomizerFactory( parsing_model, [SimpleMultisourceAtomSync([atomFilter], sync_wait_time=5)], anomaly_event_handlers, default_timestamp_paths=yamldata['Input']['TimestampPath']) else: analysis_context.atomizer_factory = SimpleByteStreamLineAtomizerFactory( parsing_model, [atomFilter], anomaly_event_handlers, default_timestamp_paths=yamldata['Input']['TimestampPath']) # Just report all unparsed atoms to the event handlers. if yamldata['Input']['Verbose'] is True: from aminer.input import VerboseUnparsedAtomHandler atomFilter.add_handler( VerboseUnparsedAtomHandler(anomaly_event_handlers, parsing_model), stop_when_handled_flag=True) else: from aminer.input import SimpleUnparsedAtomHandler atomFilter.add_handler( SimpleUnparsedAtomHandler(anomaly_event_handlers), stop_when_handled_flag=True) from aminer.analysis import NewMatchPathDetector if 'LearnMode' in yamldata: learn = yamldata['LearnMode'] else: learn = True nmpd = NewMatchPathDetector( analysis_context.aminer_config, anomaly_event_handlers, auto_include_flag=learn) analysis_context.register_component(nmpd, component_name=None) atomFilter.add_handler(nmpd) for item in yamldata['Analysis']: if item['id'] == 'None': compName = None else: compName = item['id'] if 'LearnMode' in yamldata: learn = yamldata['LearnMode'] else: learn = item['learnMode'] func = getattr(__import__("aminer.analysis", fromlist=[item['type']]), item['type']) if item['type'] == 'NewMatchPathValueDetector': tmpAnalyser = func( analysis_context.aminer_config, item['paths'], anomaly_event_handlers, auto_include_flag=learn, persistence_id=item['persistence_id'], output_log_line=item['output_logline']) elif item['type'] == 'NewMatchPathValueComboDetector': tmpAnalyser = func( analysis_context.aminer_config, item['paths'], anomaly_event_handlers, auto_include_flag=learn, persistence_id=item['persistence_id'], allow_missing_values_flag=item['allow_missing_values'], output_log_line=item['output_logline']) else: tmpAnalyser = func( analysis_context.aminer_config, item['paths'], anomaly_event_handlers, auto_include_flag=learn) analysis_context.register_component(tmpAnalyser, component_name=compName) atomFilter.add_handler(tmpAnalyser) try: for item in yamldata['EventHandlers']: func = getattr(__import__("aminer.events", fromlist=[item['type']]), item['type']) ctx = None if item['type'] == 'StreamPrinterEventHandler': if item['json'] is True: from aminer.events import JsonConverterHandler ctx = JsonConverterHandler([func(analysis_context)], analysis_context) else: ctx = func(analysis_context) # if item['type'] == 'KafkaEventHandler': # try: # item['args'][0] # except: # raise ValueError("Kafka-Topic not defined") # try: # kafkaconfig = item['args'][1] # except: # kafkaconfig = '/etc/aminer/kafka-client.conf' # config = configparser.ConfigParser() # config.read(kafkaconfig) # options = dict(config.items("DEFAULT")) # for key, val in options.items(): # try: # if key == "sasl_plain_username": # continue # options[key] = int(val) # except: # pass # kafkaEventHandler = func(analysis_context.aminer_config, item['args'][0], options) # from aminer.events import JsonConverterHandler # anomaly_event_handlers.append( # JsonConverterHandler(analysis_context.aminer_config, messageQueueEventHandlers, # analysis_context, learningMode)) # else: if ctx is None: ctx = func(analysis_context) anomaly_event_handlers.append(ctx) except KeyError: # Add stdout stream printing for debugging, tuning. from aminer.events import StreamPrinterEventHandler anomaly_event_handlers.append(StreamPrinterEventHandler(analysis_context))
def buildAnalysisPipeline(analysisContext): """Define the function to create pipeline for parsing the log data. It has also to define an AtomizerFactory to instruct AMiner how to process incoming data streams to create log atoms from them.""" # Build the parsing model first: from aminer.parsing import FirstMatchModelElement from aminer.parsing import SequenceModelElement serviceChildren = [] import CronParsingModel serviceChildren.append(CronParsingModel.getModel()) import EximParsingModel serviceChildren.append(EximParsingModel.getModel()) import RsyslogParsingModel serviceChildren.append(RsyslogParsingModel.getModel()) import SyslogPreambleModel syslogPreambleModel = SyslogPreambleModel.getModel() parsingModel = SequenceModelElement('model', [ syslogPreambleModel, FirstMatchModelElement('services', serviceChildren) ]) # Some generic imports. from aminer.analysis import AtomFilters from aminer.analysis import Rules # Create all global handler lists here and append the real handlers # later on. # Use this filter to distribute all atoms to the analysis handlers. atomFilter = AtomFilters.SubhandlerFilter(None) anomalyEventHandlers = [] # Now define the AtomizerFactory using the model. A simple line # based one is usually sufficient. from aminer.input import SimpleByteStreamLineAtomizerFactory analysisContext.atomizerFactory = SimpleByteStreamLineAtomizerFactory( parsingModel, [atomFilter], anomalyEventHandlers, defaultTimestampPath='/model/syslog/time') # Always report the unparsed lines: a part of the parsing model # seems to be missing or wrong. from aminer.input import SimpleUnparsedAtomHandler atomFilter.addHandler(SimpleUnparsedAtomHandler(anomalyEventHandlers), stopWhenHandledFlag=True) # Report new parsing model path values. Those occurr when a line # with new structural properties was parsed. from aminer.analysis import NewMatchPathDetector newMatchPathDetector = NewMatchPathDetector(analysisContext.aminerConfig, anomalyEventHandlers, autoIncludeFlag=True) analysisContext.registerComponent(newMatchPathDetector, componentName='DefaultMatchPathDetector') atomFilter.addHandler(newMatchPathDetector) # Run a whitelisting over the parsed lines. from aminer.analysis import WhitelistViolationDetector violationAction = Rules.EventGenerationMatchAction( 'Analysis.GenericViolation', 'Violation detected', anomalyEventHandlers) whitelistRules = [] # Filter out things so bad, that we do not want to accept the # risk, that a too broad whitelisting rule will accept the data # later on. whitelistRules.append( Rules.ValueMatchRule('/model/services/cron/msgtype/exec/user', 'hacker', violationAction)) # Ignore Exim queue run start/stop messages whitelistRules.append( Rules.PathExistsMatchRule('/model/services/exim/msg/queue/pid')) # Ignore all ntpd messages for now. whitelistRules.append(Rules.PathExistsMatchRule('/model/services/ntpd')) # Add a debugging rule in the middle to see everything not whitelisted # up to this point. whitelistRules.append(Rules.DebugMatchRule(False)) # Ignore hourly cronjobs, but only when started at expected time # and duration is not too long. whitelistRules.append( Rules.AndMatchRule([ Rules.ValueMatchRule( '/model/services/cron/msgtype/exec/command', '( cd / && run-parts --report /etc/cron.hourly)'), Rules.ModuloTimeMatchRule('/model/syslog/time', 3600, 17 * 60, 17 * 60 + 5) ])) atomFilter.addHandler( WhitelistViolationDetector(whitelistRules, anomalyEventHandlers)) # Include the e-mail notification handler only if the configuration # parameter was set. from aminer.events import DefaultMailNotificationEventHandler if DefaultMailNotificationEventHandler.CONFIG_KEY_MAIL_TARGET_ADDRESS in analysisContext.aminerConfig.configProperties: mailNotificationHandler = DefaultMailNotificationEventHandler( analysisContext.aminerConfig) analysisContext.registerComponent(mailNotificationHandler, componentName=None) anomalyEventHandlers.append(mailNotificationHandler) # Add stdout stream printing for debugging, tuning. from aminer.events import StreamPrinterEventHandler anomalyEventHandlers.append( StreamPrinterEventHandler(analysisContext.aminerConfig))