def copy_kitti_native_code(checkpoint_name): """Copies and compiles kitti native code. It also creates neccessary directories for storing the results of the kitti native evaluation code. """ ammf_root_dir = ammf.root_dir() kitti_native_code_copy = ammf_root_dir + '/data/outputs/' + \ checkpoint_name + '/predictions/kitti_native_eval/' # Only copy if the code has not been already copied over if not os.path.exists(kitti_native_code_copy): os.makedirs(kitti_native_code_copy) original_kitti_native_code = ammf.top_dir() + \ '/scripts/offline_eval/kitti_native_eval/' predictions_dir = ammf_root_dir + '/data/outputs/' + \ checkpoint_name + '/predictions/' # create dir for it first dir_util.copy_tree(original_kitti_native_code, kitti_native_code_copy) # run the script to compile the c++ code script_folder = predictions_dir + \ '/kitti_native_eval/' make_script = script_folder + 'run_make.sh' subprocess.call([make_script, script_folder]) # Set up the results folders if they don't exist results_dir = ammf.top_dir() + '/scripts/offline_eval/results' results_05_dir = ammf.top_dir() + '/scripts/offline_eval/results_05_iou' if not os.path.exists(results_dir): os.makedirs(results_dir) if not os.path.exists(results_05_dir): os.makedirs(results_05_dir)
def __init__(self, dataset): self._dataset = dataset self.cluster_split = dataset.cluster_split self.data_dir = ammf.root_dir() + "/data/label_clusters" self.clusters = [] self.std_devs = []
def main(_): parser = argparse.ArgumentParser() # Defaults default_pipeline_config_path = ammf.root_dir() + \ '/configs/pyramid_cars_example.config' default_data_split = 'train' default_device = '1' parser.add_argument('--pipeline_config', type=str, dest='pipeline_config_path', default=default_pipeline_config_path, help='Path to the pipeline config') parser.add_argument('--data_split', type=str, dest='data_split', default=default_data_split, help='Data split for training') parser.add_argument('--device', type=str, dest='device', default=default_device, help='CUDA device id') args = parser.parse_args() # Parse pipeline config model_config, train_config, _, dataset_config = \ config_builder.get_configs_from_pipeline_file( args.pipeline_config_path, is_training=True) # Overwrite data split dataset_config.data_split = args.data_split # Set CUDA device id os.environ['CUDA_VISIBLE_DEVICES'] = args.device train(model_config, train_config, dataset_config)
def run_kitti_native_script(checkpoint_name, score_threshold, global_step): """Runs the kitti native code script.""" eval_script_dir = ammf.root_dir() + '/data/outputs/' + \ checkpoint_name + '/predictions' make_script = eval_script_dir + \ '/kitti_native_eval/run_eval.sh' script_folder = eval_script_dir + \ '/kitti_native_eval/' results_dir = ammf.top_dir() + '/scripts/offline_eval/results/' # Round this because protobuf encodes default values as full decimal score_threshold = round(score_threshold, 3) subprocess.call([ make_script, script_folder, str(score_threshold), str(global_step), str(checkpoint_name), str(results_dir) ])
def main(): """This demo shows p1 proposals and ammf predictions in 3D and 2D in image space. Given certain thresholds for proposals and predictions, it selects and draws the bounding boxes on the image sample. It goes through the entire proposal and prediction samples for the given dataset split. The proposals, overlaid, and prediction images can be toggled on or off separately in the options section. The prediction score and IoU with ground truth can be toggled on or off as well, shown as (score, IoU) above the detection. """ dataset_config = DatasetBuilder.copy_config(DatasetBuilder.KITTI_VAL) ############################## # Options ############################## dataset_config.data_split = 'val' #bqx!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! fig_size = (10, 6.1) p1_score_threshold = 0.8 ammf_score_threshold = 0.1 #gt_classes = ['Car'] gt_classes = ['Pedestrian', 'Cyclist'] # Overwrite this to select a specific checkpoint global_step = None #checkpoint_name = 'ammf_cars_example' #checkpoint_name = 'pyramid_cars_with_aug_example' checkpoint_name = 'people' # Drawing Toggles draw_proposals_separate = True draw_overlaid = True draw_predictions_separate = True # Show orientation for both GT and proposals/predictions draw_orientations_on_prop = True draw_orientations_on_pred = True # Draw 2D bounding boxes draw_projected_2d_boxes = True # Save images for samples with no detections save_empty_images = True draw_score = True draw_iou = True ############################## # End of Options ############################## # Get the dataset dataset = DatasetBuilder.build_kitti_dataset(dataset_config) # Setup Paths predictions_dir = ammf.root_dir() + \ '/data/outputs/' + checkpoint_name + '/predictions' proposals_and_scores_dir= predictions_dir + \ '/proposals_and_scores/' + dataset.data_split predictions_and_scores_dir = predictions_dir + \ '/final_predictions_and_scores/' + dataset.data_split # Output images directories output_dir_base = predictions_dir + '/images_2d' # Get checkpoint step #steps = os.listdir() #steps.sort(key=int) #print('Available steps: {}'.format(steps)) # Use latest checkpoint if no index provided if global_step is None: #global_step = steps[-1] global_step = '120000' #!!!!!!!!!!!!!!!!!!!!!! if draw_proposals_separate: prop_out_dir = output_dir_base + '/proposals/{}/{}/{}'.format( dataset.data_split, global_step, p1_score_threshold) if not os.path.exists(prop_out_dir): os.makedirs(prop_out_dir) print('Proposal images saved to:', prop_out_dir) if draw_overlaid: overlaid_out_dir = output_dir_base + '/overlaid/{}/{}/{}'.format( dataset.data_split, global_step, ammf_score_threshold) if not os.path.exists(overlaid_out_dir): os.makedirs(overlaid_out_dir) print('Overlaid images saved to:', overlaid_out_dir) if draw_predictions_separate: pred_out_dir = output_dir_base + '/predictions/{}/{}/{}'.format( dataset.data_split, global_step, ammf_score_threshold) if not os.path.exists(pred_out_dir): os.makedirs(pred_out_dir) print('Prediction images saved to:', pred_out_dir) # Rolling average array of times for time estimation avg_time_arr_length = 10 last_times = np.repeat(time.time(), avg_time_arr_length) + \ np.arange(avg_time_arr_length) for sample_idx in range(dataset.num_samples): # Estimate time remaining with 5 slowest times start_time = time.time() last_times = np.roll(last_times, -1) last_times[-1] = start_time avg_time = np.mean(np.sort(np.diff(last_times))[-5:]) samples_remaining = dataset.num_samples - sample_idx est_time_left = avg_time * samples_remaining # Print progress and time remaining estimate sys.stdout.write('\rSaving {} / {}, Avg Time: {:.3f}s, ' 'Time Remaining: {:.2f}s'.format( sample_idx + 1, dataset.num_samples, avg_time, est_time_left)) sys.stdout.flush() #sample_idx=188 sample_name = dataset.sample_names[sample_idx] img_idx = int(sample_name) #img_idx = 188 #bqx!!!!!!!!!!!!!!!!!!!!111 ############################## # Proposals ############################## if draw_proposals_separate or draw_overlaid: # Load proposals from files proposals_file_path = proposals_and_scores_dir + \ "/{}/{}.txt".format(global_step, sample_name) if not os.path.exists(proposals_file_path): print('Sample {}: No proposals, skipping'.format(sample_name)) continue print('Sample {}: Drawing proposals'.format(sample_name)) proposals_and_scores = np.loadtxt(proposals_file_path) proposal_boxes_3d = proposals_and_scores[:, 0:7] proposal_scores = proposals_and_scores[:, 7] # Apply score mask to proposals score_mask = proposal_scores > p1_score_threshold proposal_boxes_3d = proposal_boxes_3d[score_mask] proposal_scores = proposal_scores[score_mask] proposal_objs = \ [box_3d_encoder.box_3d_to_object_label(proposal, obj_type='Proposal') for proposal in proposal_boxes_3d] ############################## # Predictions ############################## if draw_predictions_separate or draw_overlaid: predictions_file_path = predictions_and_scores_dir + \ "/{}/{}.txt".format(global_step, sample_name) if not os.path.exists(predictions_file_path): continue # Load predictions from files predictions_and_scores = np.loadtxt( predictions_and_scores_dir + "/{}/{}.txt".format(global_step, sample_name)) prediction_boxes_3d = predictions_and_scores[:, 0:7] prediction_scores = predictions_and_scores[:, 7] prediction_class_indices = predictions_and_scores[:, 8] # process predictions only if we have any predictions left after # masking if len(prediction_boxes_3d) > 0: # Apply score mask ammf_score_mask = prediction_scores >= ammf_score_threshold prediction_boxes_3d = prediction_boxes_3d[ammf_score_mask] prediction_scores = prediction_scores[ammf_score_mask] prediction_class_indices = \ prediction_class_indices[ammf_score_mask] # # Swap l, w for predictions where w > l # swapped_indices = \ # prediction_boxes_3d[:, 4] > prediction_boxes_3d[:, 3] # prediction_boxes_3d = np.copy(prediction_boxes_3d) # prediction_boxes_3d[swapped_indices, 3] = \ # prediction_boxes_3d[swapped_indices, 4] # prediction_boxes_3d[swapped_indices, 4] = \ # prediction_boxes_3d[swapped_indices, 3] ############################## # Ground Truth ############################## # Get ground truth labels if dataset.has_labels: gt_objects = obj_utils.read_labels(dataset.label_dir, img_idx) else: gt_objects = [] # Filter objects to desired difficulty filtered_gt_objs = dataset.kitti_utils.filter_labels( gt_objects, classes=gt_classes) boxes2d, _, _ = obj_utils.build_bbs_from_objects( filtered_gt_objs, class_needed=gt_classes) image_path = dataset.get_rgb_image_path(sample_name) image = Image.open(image_path) image_size = image.size # Read the stereo calibration matrix for visualization stereo_calib = calib_utils.read_calibration(dataset.calib_dir, img_idx) calib_p2 = stereo_calib.p2 ############################## # Reformat and prepare to draw ############################## if draw_proposals_separate or draw_overlaid: proposals_as_anchors = box_3d_encoder.box_3d_to_anchor( proposal_boxes_3d) proposal_boxes, _ = anchor_projector.project_to_image_space( proposals_as_anchors, calib_p2, image_size) num_of_proposals = proposal_boxes_3d.shape[0] prop_fig, prop_2d_axes, prop_3d_axes = \ vis_utils.visualization(dataset.rgb_image_dir, img_idx, display=False) draw_proposals(filtered_gt_objs, calib_p2, num_of_proposals, proposal_objs, proposal_boxes, prop_2d_axes, prop_3d_axes, draw_orientations_on_prop) if draw_proposals_separate: # Save just the proposals filename = prop_out_dir + '/' + sample_name + '.png' plt.savefig(filename) if not draw_overlaid: plt.close(prop_fig) if draw_overlaid or draw_predictions_separate: if len(prediction_boxes_3d) > 0: # Project the 3D box predictions to image space image_filter = [] final_boxes_2d = [] for i in range(len(prediction_boxes_3d)): box_3d = prediction_boxes_3d[i, 0:7] img_box = box_3d_projector.project_to_image_space( box_3d, calib_p2, truncate=True, image_size=image_size, discard_before_truncation=False) if img_box is not None: image_filter.append(True) final_boxes_2d.append(img_box) else: image_filter.append(False) final_boxes_2d = np.asarray(final_boxes_2d) final_prediction_boxes_3d = prediction_boxes_3d[image_filter] final_scores = prediction_scores[image_filter] final_class_indices = prediction_class_indices[image_filter] num_of_predictions = final_boxes_2d.shape[0] # Convert to objs final_prediction_objs = \ [box_3d_encoder.box_3d_to_object_label( prediction, obj_type='Prediction') for prediction in final_prediction_boxes_3d] for (obj, score) in zip(final_prediction_objs, final_scores): obj.score = score else: if save_empty_images: pred_fig, pred_2d_axes, pred_3d_axes = \ vis_utils.visualization(dataset.rgb_image_dir, img_idx, display=False, fig_size=fig_size) filename = pred_out_dir + '/' + sample_name + '.png' plt.savefig(filename) plt.close(pred_fig) continue if draw_overlaid: # Overlay prediction boxes on image draw_predictions(filtered_gt_objs, calib_p2, num_of_predictions, final_prediction_objs, final_class_indices, final_boxes_2d, prop_2d_axes, prop_3d_axes, draw_score, draw_iou, gt_classes, draw_orientations_on_pred) filename = overlaid_out_dir + '/' + sample_name + '.png' plt.savefig(filename) plt.close(prop_fig) if draw_predictions_separate: # Now only draw prediction boxes on images # on a new figure handler if draw_projected_2d_boxes: pred_fig, pred_2d_axes, pred_3d_axes = \ vis_utils.visualization(dataset.rgb_image_dir, img_idx, display=False, fig_size=fig_size) draw_predictions(filtered_gt_objs, calib_p2, num_of_predictions, final_prediction_objs, final_class_indices, final_boxes_2d, pred_2d_axes, pred_3d_axes, draw_score, draw_iou, gt_classes, draw_orientations_on_pred) else: pred_fig, pred_3d_axes = \ vis_utils.visualize_single_plot( dataset.rgb_image_dir, img_idx, display=False) draw_3d_predictions(filtered_gt_objs, calib_p2, num_of_predictions, final_prediction_objs, final_class_indices, final_boxes_2d, pred_3d_axes, draw_score, draw_iou, gt_classes, draw_orientations_on_pred) filename = pred_out_dir + '/' + sample_name + '.png' plt.savefig(filename) plt.close(pred_fig) print('\nDone')
def __init__(self, dataset): self._dataset = dataset self._mini_batch_sampler = \ balanced_positive_negative_sampler.BalancedPositiveNegativeSampler() ############################## # Parse KittiUtils config ############################## self.kitti_utils_config = dataset.config.kitti_utils_config self._area_extents = self.kitti_utils_config.area_extents self._anchor_strides = np.reshape( self.kitti_utils_config.anchor_strides, (-1, 2)) ############################## # Parse MiniBatchUtils config ############################## self.config = self.kitti_utils_config.mini_batch_config self._density_threshold = self.config.density_threshold # p1 mini batches p1_config = self.config.p1_config p1_iou_type = p1_config.WhichOneof('iou_type') if p1_iou_type == 'iou_2d_thresholds': self.p1_iou_type = '2d' self.p1_iou_thresholds = p1_config.iou_2d_thresholds elif p1_iou_type == 'iou_3d_thresholds': self.p1_iou_type = '3d' self.p1_iou_thresholds = p1_config.iou_3d_thresholds self.p1_neg_iou_range = [ self.p1_iou_thresholds.neg_iou_lo, self.p1_iou_thresholds.neg_iou_hi ] self.p1_pos_iou_range = [ self.p1_iou_thresholds.pos_iou_lo, self.p1_iou_thresholds.pos_iou_hi ] self.p1_mini_batch_size = p1_config.mini_batch_size # ammf mini batches ammf_config = self.config.ammf_config self.ammf_iou_type = '2d' self.ammf_iou_thresholds = ammf_config.iou_2d_thresholds self.ammf_neg_iou_range = [ self.ammf_iou_thresholds.neg_iou_lo, self.ammf_iou_thresholds.neg_iou_hi ] self.ammf_pos_iou_range = [ self.ammf_iou_thresholds.pos_iou_lo, self.ammf_iou_thresholds.pos_iou_hi ] self.ammf_mini_batch_size = ammf_config.mini_batch_size # Setup paths self.mini_batch_dir = ammf.root_dir() + '/data/mini_batches/' + \ 'iou_{}/'.format(self.p1_iou_type) + \ dataset.name + '/' + dataset.cluster_split + '/' + \ dataset.bev_source # Array column indices for saving to files self.col_length = 9 self.col_anchor_indices = 0 self.col_ious = 1 self.col_offsets_lo = 2 self.col_offsets_hi = 8 self.col_class_idx = 8
def main(): """ Converts a set of network predictions into text files required for KITTI evaluation. """ ############################## # Options ############################## checkpoint_name = 'ammf_cars_example' data_split = 'val' global_steps = None # global_steps = [28000, 19000, 33000, 34000] score_threshold = 0.1 save_2d = False # Save 2D predictions save_3d = True # Save 2D and 3D predictions together save_alphas = True # Save alphas (observation angles) # Checkpoints below this are skipped min_step = 20000 ############################## # End of Options ############################## # Parse experiment config pipeline_config_file = \ ammf.root_dir() + '/data/outputs/' + checkpoint_name + \ '/' + checkpoint_name + '.config' _, _, _, dataset_config = \ config_builder_util.get_configs_from_pipeline_file( pipeline_config_file, is_training=False) # Overwrite defaults dataset_config = config_builder_util.proto_to_obj(dataset_config) dataset_config.data_split = data_split dataset_config.aug_list = [] if data_split == 'test': dataset_config.data_split_dir = 'testing' dataset = DatasetBuilder.build_kitti_dataset(dataset_config, use_defaults=False) # Get available prediction folders predictions_root_dir = ammf.root_dir() + '/data/outputs/' + \ checkpoint_name + '/predictions' final_predictions_root_dir = predictions_root_dir + \ '/final_predictions_and_scores/' + dataset.data_split print('Converting detections from', final_predictions_root_dir) if not global_steps: global_steps = os.listdir(final_predictions_root_dir) global_steps.sort(key=int) print('Checkpoints found ', global_steps) for step_idx in range(len(global_steps)): global_step = global_steps[step_idx] # Skip first checkpoint if int(global_step) < min_step: continue final_predictions_dir = final_predictions_root_dir + \ '/' + str(global_step) # 2D and 3D prediction directories kitti_predictions_2d_dir = predictions_root_dir + \ '/kitti_predictions_2d/' + \ dataset.data_split + '/' + \ str(score_threshold) + '/' + \ str(global_step) + '/data' kitti_predictions_3d_dir = predictions_root_dir + \ '/kitti_predictions_3d/' + \ dataset.data_split + '/' + \ str(score_threshold) + '/' + \ str(global_step) + '/data' if save_2d and not os.path.exists(kitti_predictions_2d_dir): os.makedirs(kitti_predictions_2d_dir) if save_3d and not os.path.exists(kitti_predictions_3d_dir): os.makedirs(kitti_predictions_3d_dir) # Do conversion num_samples = dataset.num_samples num_valid_samples = 0 print('\nGlobal step:', global_step) print('Converting detections from:', final_predictions_dir) if save_2d: print('2D Detections saved to:', kitti_predictions_2d_dir) if save_3d: print('3D Detections saved to:', kitti_predictions_3d_dir) for sample_idx in range(num_samples): # Print progress sys.stdout.write('\rConverting {} / {}'.format( sample_idx + 1, num_samples)) sys.stdout.flush() sample_name = dataset.sample_names[sample_idx] prediction_file = sample_name + '.txt' kitti_predictions_2d_file_path = kitti_predictions_2d_dir + \ '/' + prediction_file kitti_predictions_3d_file_path = kitti_predictions_3d_dir + \ '/' + prediction_file predictions_file_path = final_predictions_dir + \ '/' + prediction_file # If no predictions, skip to next file if not os.path.exists(predictions_file_path): if save_2d: np.savetxt(kitti_predictions_2d_file_path, []) if save_3d: np.savetxt(kitti_predictions_3d_file_path, []) continue all_predictions = np.loadtxt(predictions_file_path) # # Swap l, w for predictions where w > l # swapped_indices = all_predictions[:, 4] > all_predictions[:, 3] # fixed_predictions = np.copy(all_predictions) # fixed_predictions[swapped_indices, 3] = all_predictions[ # swapped_indices, 4] # fixed_predictions[swapped_indices, 4] = all_predictions[ # swapped_indices, 3] score_filter = all_predictions[:, 7] >= score_threshold all_predictions = all_predictions[score_filter] # If no predictions, skip to next file if len(all_predictions) == 0: if save_2d: np.savetxt(kitti_predictions_2d_file_path, []) if save_3d: np.savetxt(kitti_predictions_3d_file_path, []) continue # Project to image space sample_name = prediction_file.split('.')[0] img_idx = int(sample_name) # Load image for truncation image = Image.open(dataset.get_rgb_image_path(sample_name)) stereo_calib_p2 = calib_utils.read_calibration(dataset.calib_dir, img_idx).p2 boxes = [] image_filter = [] for i in range(len(all_predictions)): box_3d = all_predictions[i, 0:7] img_box = box_3d_projector.project_to_image_space( box_3d, stereo_calib_p2, truncate=True, image_size=image.size) # Skip invalid boxes (outside image space) if img_box is None: image_filter.append(False) else: image_filter.append(True) boxes.append(img_box) boxes = np.asarray(boxes) all_predictions = all_predictions[image_filter] # If no predictions, skip to next file if len(boxes) == 0: if save_2d: np.savetxt(kitti_predictions_2d_file_path, []) if save_3d: np.savetxt(kitti_predictions_3d_file_path, []) continue num_valid_samples += 1 # To keep each value in its appropriate position, an array of zeros # (N, 16) is allocated but only values [4:16] are used kitti_predictions = np.zeros([len(boxes), 16]) # Get object types all_pred_classes = all_predictions[:, 8].astype(np.int32) obj_types = [dataset.classes[class_idx] for class_idx in all_pred_classes] # Truncation and Occlusion are always empty (see below) # Alpha if not save_alphas: kitti_predictions[:, 3] = -10 * \ np.ones((len(kitti_predictions)), dtype=np.int32) else: alphas = all_predictions[:, 6] - \ np.arctan2(all_predictions[:, 0], all_predictions[:, 2]) kitti_predictions[:, 3] = alphas # 2D predictions kitti_predictions[:, 4:8] = boxes[:, 0:4] # 3D predictions # (l, w, h) kitti_predictions[:, 8] = all_predictions[:, 5] kitti_predictions[:, 9] = all_predictions[:, 4] kitti_predictions[:, 10] = all_predictions[:, 3] # (x, y, z) kitti_predictions[:, 11:14] = all_predictions[:, 0:3] # (ry, score) kitti_predictions[:, 14:16] = all_predictions[:, 6:8] # Round detections to 3 decimal places kitti_predictions = np.round(kitti_predictions, 3) # Empty Truncation, Occlusion kitti_empty_1 = -1 * np.ones((len(kitti_predictions), 2), dtype=np.int32) # Empty 3D (x, y, z) kitti_empty_2 = -1 * np.ones((len(kitti_predictions), 3), dtype=np.int32) # Empty 3D (h, w, l) kitti_empty_3 = -1000 * np.ones((len(kitti_predictions), 3), dtype=np.int32) # Empty 3D (ry) kitti_empty_4 = -10 * np.ones((len(kitti_predictions), 1), dtype=np.int32) # Stack 2D predictions text kitti_text_2d = np.column_stack([obj_types, kitti_empty_1, kitti_predictions[:, 3:8], kitti_empty_2, kitti_empty_3, kitti_empty_4, kitti_predictions[:, 15]]) # Stack 3D predictions text kitti_text_3d = np.column_stack([obj_types, kitti_empty_1, kitti_predictions[:, 3:16]]) # Save to text files if save_2d: np.savetxt(kitti_predictions_2d_file_path, kitti_text_2d, newline='\r\n', fmt='%s') if save_3d: np.savetxt(kitti_predictions_3d_file_path, kitti_text_3d, newline='\r\n', fmt='%s') print('\nNum valid:', num_valid_samples) print('Num samples:', num_samples)
def main(dataset=None): """Generates anchors info which is used for mini batch sampling. Processing on 'Cars' can be split into multiple processes, see the Options section for configuration. Args: dataset: KittiDataset (optional) If dataset is provided, only generate info for that dataset. If no dataset provided, generates info for all 3 classes. """ if dataset is not None: do_preprocessing(dataset, None) return car_dataset_config_path = ammf.root_dir() + \ '/configs/mb_preprocessing/p1_cars.config' ped_dataset_config_path = ammf.root_dir() + \ '/configs/mb_preprocessing/p1_pedestrians.config' cyc_dataset_config_path = ammf.root_dir() + \ '/configs/mb_preprocessing/p1_cyclists.config' ppl_dataset_config_path = ammf.root_dir() + \ '/configs/mb_preprocessing/p1_people.config' unittest_dataset_config_path = ammf.root_dir() + \ '/configs/unittest_model.config' ############################## # Options ############################## # Serial vs parallel processing in_parallel = True process_car = True # Cars process_ped = False # Pedestrians process_cyc = False # Cyclists process_ppl = True # People (Pedestrians + Cyclists) process_unittest = False # Number of child processes to fork, samples will # be divided evenly amongst the processes (in_parallel must be True) num_car_children = 8 num_ped_children = 8 num_cyc_children = 8 num_ppl_children = 8 num_unittest_children = 8 ############################## # Dataset setup ############################## if process_car: car_dataset = DatasetBuilder.load_dataset_from_config( car_dataset_config_path) if process_ped: ped_dataset = DatasetBuilder.load_dataset_from_config( ped_dataset_config_path) if process_cyc: cyc_dataset = DatasetBuilder.load_dataset_from_config( cyc_dataset_config_path) if process_ppl: ppl_dataset = DatasetBuilder.load_dataset_from_config( ppl_dataset_config_path) if process_unittest: unittest_dataset = DatasetBuilder.load_dataset_from_config( unittest_dataset_config_path) ############################## # Serial Processing ############################## if not in_parallel: if process_car: do_preprocessing(car_dataset, None) if process_ped: do_preprocessing(ped_dataset, None) if process_cyc: do_preprocessing(cyc_dataset, None) if process_ppl: do_preprocessing(ppl_dataset, None) if process_unittest: do_preprocessing(unittest_dataset, None) print('All Done (Serial)') ############################## # Parallel Processing ############################## else: # List of all child pids to wait on all_child_pids = [] # Cars if process_car: car_indices_split = split_indices(car_dataset, num_car_children) split_work(all_child_pids, car_dataset, car_indices_split, num_car_children) # Pedestrians if process_ped: ped_indices_split = split_indices(ped_dataset, num_ped_children) split_work(all_child_pids, ped_dataset, ped_indices_split, num_ped_children) # Cyclists if process_cyc: cyc_indices_split = split_indices(cyc_dataset, num_cyc_children) split_work(all_child_pids, cyc_dataset, cyc_indices_split, num_cyc_children) # People (Pedestrians + Cyclists) if process_ppl: ppl_indices_split = split_indices(ppl_dataset, num_ppl_children) split_work(all_child_pids, ppl_dataset, ppl_indices_split, num_ppl_children) if process_unittest: unittest_indices_split = split_indices(unittest_dataset, num_unittest_children) split_work(all_child_pids, unittest_dataset, unittest_indices_split, num_unittest_children) # Wait to child processes to finish print('num children:', len(all_child_pids)) for i, child_pid in enumerate(all_child_pids): os.waitpid(child_pid, 0) print('All Done (Parallel)')
def get_configs_from_pipeline_file(pipeline_config_path, is_training): """Reads model configuration from a pipeline_pb2.NetworkPipelineConfig. Args: pipeline_config_path: A path directory to the network pipeline config is_training: A boolean flag to indicate training stage, used for creating the checkpoint directory which must be created at the first training iteration. Returns: model_config: A model_pb2.ModelConfig train_config: A train_pb2.TrainConfig eval_config: A eval_pb2.EvalConfig dataset_config: A kitti_dataset_pb2.KittiDatasetConfig """ pipeline_config = pipeline_pb2.NetworkPipelineConfig() with open(pipeline_config_path, 'r') as f: text_format.Merge(f.read(), pipeline_config) model_config = pipeline_config.model_config # Make sure the checkpoint name matches the config filename config_file_name = \ os.path.split(pipeline_config_path)[1].split('.')[0] checkpoint_name = model_config.checkpoint_name if config_file_name != checkpoint_name: raise ValueError('Config and checkpoint names must match.') output_root_dir = ammf.root_dir() + '/data/outputs/' + checkpoint_name # Construct paths paths_config = model_config.paths_config if not paths_config.checkpoint_dir: checkpoint_dir = output_root_dir + '/checkpoints' if is_training: if not os.path.exists(checkpoint_dir): os.makedirs(checkpoint_dir) paths_config.checkpoint_dir = checkpoint_dir if not paths_config.logdir: paths_config.logdir = output_root_dir + '/logs/' if not paths_config.pred_dir: paths_config.pred_dir = output_root_dir + '/predictions' train_config = pipeline_config.train_config eval_config = pipeline_config.eval_config dataset_config = pipeline_config.dataset_config if is_training: # Copy the config to the experiments folder experiment_config_path = output_root_dir + '/' +\ model_config.checkpoint_name experiment_config_path += '.config' # Copy this even if the config exists, in case some parameters # were modified shutil.copy(pipeline_config_path, experiment_config_path) return model_config, train_config, eval_config, dataset_config
def save_predictions_in_kitti_format(model, checkpoint_name, data_split, score_threshold, global_step): """ Converts a set of network predictions into text files required for KITTI evaluation. """ dataset = model.dataset # Round this because protobuf encodes default values as full decimal score_threshold = round(score_threshold, 3) # Get available prediction folders predictions_root_dir = ammf.root_dir() + '/data/outputs/' + \ checkpoint_name + '/predictions' final_predictions_root_dir = predictions_root_dir + \ '/final_predictions_and_scores/' + dataset.data_split final_predictions_dir = final_predictions_root_dir + \ '/' + str(global_step) # 3D prediction directories kitti_predictions_3d_dir = predictions_root_dir + \ '/kitti_native_eval/' + \ str(score_threshold) + '/' + \ str(global_step) + '/data' if not os.path.exists(kitti_predictions_3d_dir): os.makedirs(kitti_predictions_3d_dir) # Do conversion num_samples = dataset.num_samples num_valid_samples = 0 print('\nGlobal step:', global_step) print('Converting detections from:', final_predictions_dir) print('3D Detections being saved to:', kitti_predictions_3d_dir) for sample_idx in range(num_samples): # Print progress sys.stdout.write('\rConverting {} / {}'.format(sample_idx + 1, num_samples)) sys.stdout.flush() sample_name = dataset.sample_names[sample_idx] prediction_file = sample_name + '.txt' kitti_predictions_3d_file_path = kitti_predictions_3d_dir + \ '/' + prediction_file predictions_file_path = final_predictions_dir + \ '/' + prediction_file # If no predictions, skip to next file if not os.path.exists(predictions_file_path): np.savetxt(kitti_predictions_3d_file_path, []) continue all_predictions = np.loadtxt(predictions_file_path) # # Swap l, w for predictions where w > l #swapped_indices = all_predictions[:, 4] > all_predictions[:, 3] #fixed_predictions = np.copy(all_predictions) #fixed_predictions[swapped_indices, 3] = all_predictions[ # swapped_indices, 4] #fixed_predictions[swapped_indices, 4] = all_predictions[ # swapped_indices, 3] score_filter = all_predictions[:, 7] >= score_threshold all_predictions = all_predictions[score_filter] # If no predictions, skip to next file if len(all_predictions) == 0: np.savetxt(kitti_predictions_3d_file_path, []) continue # Project to image space sample_name = prediction_file.split('.')[0] img_idx = int(sample_name) # Load image for truncation image = Image.open(dataset.get_rgb_image_path(sample_name)) stereo_calib_p2 = calib_utils.read_calibration(dataset.calib_dir, img_idx).p2 boxes = [] image_filter = [] for i in range(len(all_predictions)): box_3d = all_predictions[i, 0:7] img_box = box_3d_projector.project_to_image_space( box_3d, stereo_calib_p2, truncate=True, image_size=image.size) # Skip invalid boxes (outside image space) if img_box is None: image_filter.append(False) continue image_filter.append(True) boxes.append(img_box) boxes = np.asarray(boxes) all_predictions = all_predictions[image_filter] # If no predictions, skip to next file if len(boxes) == 0: np.savetxt(kitti_predictions_3d_file_path, []) continue num_valid_samples += 1 # To keep each value in its appropriate position, an array of zeros # (N, 16) is allocated but only values [4:16] are used kitti_predictions = np.zeros([len(boxes), 16]) # Get object types all_pred_classes = all_predictions[:, 8].astype(np.int32) obj_types = [ dataset.classes[class_idx] for class_idx in all_pred_classes ] # Truncation and Occlusion are always empty (see below) # Alpha (Not computed) kitti_predictions[:, 3] = -10 * np.ones( (len(kitti_predictions)), dtype=np.int32) # 2D predictions kitti_predictions[:, 4:8] = boxes[:, 0:4] # 3D predictions # (l, w, h) kitti_predictions[:, 8] = all_predictions[:, 5] kitti_predictions[:, 9] = all_predictions[:, 4] kitti_predictions[:, 10] = all_predictions[:, 3] # (x, y, z) kitti_predictions[:, 11:14] = all_predictions[:, 0:3] # (ry, score) kitti_predictions[:, 14:16] = all_predictions[:, 6:8] # Round detections to 3 decimal places kitti_predictions = np.round(kitti_predictions, 3) # Empty Truncation, Occlusion kitti_empty_1 = -1 * np.ones( (len(kitti_predictions), 2), dtype=np.int32) # Stack 3D predictions text kitti_text_3d = np.column_stack( [obj_types, kitti_empty_1, kitti_predictions[:, 3:16]]) # Save to text files np.savetxt(kitti_predictions_3d_file_path, kitti_text_3d, newline='\r\n', fmt='%s') print('\nNum valid:', num_valid_samples) print('Num samples:', num_samples)
class DatasetBuilder(object): """ Static class to return preconfigured dataset objects """ #1.unittest KITTI_UNITTEST = KittiDatasetConfig( name="unittest-kitti", dataset_dir=ammf.root_dir() + "/tests/datasets/Kitti/object", data_split="train", data_split_dir="training", has_labels=True, cluster_split="train", classes=["Car", "Pedestrian", "Cyclist"], num_clusters=[2, 1, 1], ) #2.train KITTI_TRAIN = KittiDatasetConfig(name="kitti", data_split="train", data_split_dir="training", has_labels=True, cluster_split="train", classes=["Car"], num_clusters=[2]) #3.val KITTI_VAL = KittiDatasetConfig( name="kitti", data_split="val", data_split_dir="training", has_labels=True, cluster_split="train", classes=["Car"], num_clusters=[2], ) #4.test KITTI_TEST = KittiDatasetConfig( name="kitti", data_split="test", data_split_dir="testing", has_labels=False, cluster_split="train", classes=["Car"], num_clusters=[2], ) #5.trainval KITTI_TRAINVAL = KittiDatasetConfig( name="kitti", data_split="trainval", data_split_dir="training", has_labels=True, cluster_split="trainval", classes=["Car"], num_clusters=[2], ) #6.train_mini KITTI_TRAIN_MINI = KittiDatasetConfig( name="kitti", data_split="train_mini", data_split_dir="training", has_labels=True, cluster_split="train", classes=["Car"], num_clusters=[2], ) #7.val_mini KITTI_VAL_MINI = KittiDatasetConfig( name="kitti", data_split="val_mini", data_split_dir="training", has_labels=True, cluster_split="train", classes=["Car"], num_clusters=[2], ) #8.test_mini KITTI_TEST_MINI = KittiDatasetConfig( name="kitti", data_split="test_mini", data_split_dir="testing", has_labels=False, cluster_split="train", classes=["Car"], num_clusters=[2], ) #9.CONFIG_DEFAULTS_PROTO CONFIG_DEFAULTS_PROTO = \ """ bev_source: 'lidar' kitti_utils_config { area_extents: [-40, 40, -5, 3, 0, 70] voxel_size: 0.1 anchor_strides: [0.5, 0.5, 0.5, 0.5, 0.5, 0.5] bev_generator { slices { height_lo: -0.2 height_hi: 2.3 num_slices: 5 } } mini_batch_config { density_threshold: 1 p1_config { iou_2d_thresholds { neg_iou_lo: 0.0 neg_iou_hi: 0.3 pos_iou_lo: 0.5 pos_iou_hi: 1.0 } # iou_3d_thresholds { # neg_iou_lo: 0.0 # neg_iou_hi: 0.005 # pos_iou_lo: 0.1 # pos_iou_hi: 1.0 # } mini_batch_size: 512 } ammf_config { iou_2d_thresholds { neg_iou_lo: 0.0 neg_iou_hi: 0.55 pos_iou_lo: 0.65 pos_iou_hi: 1.0 } mini_batch_size: 1024 } } } """ #9.1 @staticmethod def load_dataset_from_config(dataset_config_path): dataset_config = kitti_dataset_pb2.KittiDatasetConfig() with open(dataset_config_path, 'r') as f: text_format.Merge(f.read(), dataset_config) return DatasetBuilder.build_kitti_dataset(dataset_config, use_defaults=False) #9.2 @staticmethod def copy_config(cfg): return deepcopy(cfg) #9.3 @staticmethod def merge_defaults(cfg): cfg_copy = DatasetBuilder.copy_config(cfg) text_format.Merge(DatasetBuilder.CONFIG_DEFAULTS_PROTO, cfg_copy) return cfg_copy #9.4 @staticmethod def build_kitti_dataset(base_cfg, use_defaults=True, new_cfg=None) -> KittiDataset: """Builds a KittiDataset object using the provided configurations Args: base_cfg: a base dataset configuration use_defaults: whether to use the default config values new_cfg: (optional) a custom dataset configuration, no default values will be used, all config values must be provided Returns: KittiDataset object """ cfg_copy = DatasetBuilder.copy_config(base_cfg) if use_defaults: # Use default values text_format.Merge(DatasetBuilder.CONFIG_DEFAULTS_PROTO, cfg_copy) if new_cfg: # Use new config values if provided cfg_copy.MergeFrom(new_cfg) return KittiDataset(cfg_copy)