def create_amphora(params,param_name,username,password): # Create new amphora for data credentials = Credentials(username=username, password=password) client = AmphoraDataRepositoryClient(credentials) ## Create Amphora sep=" " amphora_description=sep.join(["Simulation of Pandemic code from Microprediction \n Parameter set is for",param_name," \n \ N =",str(float(params['geometry']['n']))," \n I =",str(float(params['geometry']['i']))," \n \ R =",str(float(params['geometry']['r']))," \n B =",str(float(params['geometry']['b']))," \n \ H =",str(float(params['geometry']['h']))," \n C =",str(float(params['geometry']['c']))," \n \ S =",str(float(params['geometry']['s']))," \n E =",str(float(params['geometry']['e']))," \n \ P =",str(float(params['geometry']['p']))," \n T =",str(float(params['motion']['t']))," \n \ K =",str(float(params['motion']['k']))," \n W =",str(float(params['motion']['w']))," \n \ VI =",str(float(params['health']['vi']))," \n IS =",str(float(params['health']['is']))," \n \ IP =",str(float(params['health']['ip']))," \n SP =",str(float(params['health']['sp']))," \n \ IR =",str(float(params['health']['ir']))," \n ID =",str(float(params['health']['id']))," \n \ SR =",str(float(params['health']['sr']))," \n SD =",str(float(params['health']['sd']))," \n \ PD =",str(float(params['health']['pd']))," \n PR =",str(float(params['health']['pr']))]) amphora_tnc="Creative_Commons_0" amphora_name=sep.join(["Ensemble simulation of Microprediction Pandemic for",param_name]) labels=['Covid,simulation,timeseries',param_name] amphora = client.create_amphora(name = amphora_name, price = 0, description = amphora_description, terms_and_conditions_id = amphora_tnc, labels=labels) amphora_id = amphora.amphora_id # Create signals amphora.create_signal("vulnerable", attributes={"units":"#"}) amphora.create_signal("infected", attributes={"units":"#"}) amphora.create_signal("symptomatic", attributes={"units":"#"}) amphora.create_signal("positive", attributes={"units":"#"}) amphora.create_signal("recovered", attributes={"units":"#"}) amphora.create_signal("deceased", attributes={"units":"#"}) return amphora_id
def amphora_callback(day, day_fraction, home, work, positions, status, params, step_no, plot_hourly, plt): current_time = day + day_fraction if abs(current_time % 1) < 0.002: # Login to amphoradata.com try: username = os.getenv('amphora_username') password = os.getenv('amphora_password') credentials = Credentials(username, password) client = AmphoraDataRepositoryClient(credentials) except: print( "Couldn't login. Please sign up at amphoradata.com/regsiter if you need a free account." ) # Check if amphora exists amphora_id = os.environ["amphora_id"] if amphora_id == None: param_name = "HOMESICK" amphora_id = create_amphora(params, param_name, username, password) # Push file (end of each day) print(current_time) push_snapshot(positions, status, current_time, client, amphora_id) # Push signal (when infected go to 0) if (sum(s in [INFECTED] for s in status) == 0): push_summary_timeseries(data, column_names, client, amphora_id)
from datetime import datetime, timedelta from amphora.client import AmphoraDataRepositoryClient, Credentials import amphora_api_client as a10a from amphora_api_client.rest import ApiException from amphora_api_client.configuration import Configuration import csv import urllib.request import ast country_codes = ["AUS","NZL","PNG","GBR","CAN","USA","CHN","FJI","IDN","IND"] country_id_stor = [] # Set up connection to amphoradata.com # provide your login credentials credentials = Credentials(username=os.getenv('username'), password=os.getenv('password')) # create a client for interacting with the public Amphora Data Repository client = AmphoraDataRepositoryClient(credentials) date_str = [] def importCsv(file): cnt = 0 with open(file, newline='') as csvfile: data = csv.reader(csvfile, delimiter=',', quotechar='|') for row in data: if row: date_str.append(row) cnt += 1 print(cnt)
import time import os from datetime import datetime, timedelta import amphora_api_client as a10a from amphora_api_client.rest import ApiException from amphora_api_client.configuration import Configuration import json from amphora.client import AmphoraDataRepositoryClient, Credentials # provide your login credentials credentials = Credentials(username=os.environ['username'], password=os.environ['password']) # create a client for interacting with the public Amphora Data Repository client = AmphoraDataRepositoryClient(credentials) # https://beta.amphoradata.com/Amphorae/Detail?id=57d6593f-1889-410a-b1fb-631b6f9c9c85 id = "57d6593f-1889-410a-b1fb-631b6f9c9c85" try: amphora_api = a10a.AmphoraeApi(client.apiClient) print(f'Getting signals for: {amphora_api.amphorae_read(id).name}') signals = amphora_api.amphorae_signals_get_signals(id) properties = list((s._property for s in signals)) ts_api = a10a.TimeSeriesApi( client.apiClient) # the API for interacting with time series tomorrow = datetime.now() + timedelta(hours=24) # Create a DateTimeRange to describe over what period we want data.
import os import getpass from amphora.client import AmphoraDataRepositoryClient, Credentials from amphora_api_client import ApplicationsApi, CreateApplication, AppLocation, UpdateApplication username = input("Enter your Amphora username:"******"Enter your Amphora application Id:") origin = input("Enter your deployed host/ CORS origin:") redirect_path = input( "Enter the redirect path (default: /#/callback):") or "/#/callback" new_location = AppLocation(origin=origin, allowed_redirect_paths=[redirect_path]) application = appApi.applications_read_application(appId) print(f'Found existing application: {application.name}') locations = application.locations locations.append(new_location) update = UpdateApplication(name=application.name, logout_url=application.logout_url, id=application.id, locations=locations) appApi.applications_update_application(appId, update)
# -*- coding: utf-8 -*- """ Created on Wed May 13 10:50:19 2020 @author: Isaac """ # Import modules from amphora.client import AmphoraDataRepositoryClient, Credentials import os # Login to amphora amphora_username = os.getenv('username') amphora_password = os.getenv('password') credentials = Credentials(username=amphora_username, password=amphora_password) client = AmphoraDataRepositoryClient(credentials) # Get amphora id amphora_id = "29ae56f6-cd0d-4e20-b6d2-9acf8fbf2495" # Share amphora amphora = client.get_amphora(amphora_id) amphora.share_with("*****@*****.**")
from amphora.client import AmphoraClient, Credentials credentials = Credentials("*****@*****.**", "Password1!") client = AmphoraClient(credentials) amphora_id = "1227a860-0571-4542-942f-dd36cc13f810" me = client.get_self() print(me) amphora = client.get_amphora(amphora_id) print(amphora.metadata) files = amphora.get_files() print(files) amphora_file = amphora.get_file("Nola.png") attr = amphora_file.get_attributes() # amphora_file.download("trst.png") // bug
import os from amphora.client import AmphoraDataRepositoryClient, Credentials NEW_FILE_NAME = "a_new_file.jpg" # provide your login credentials credentials = Credentials(username=os.environ['username'], password=os.environ['password'], host="https://app.amphoradata.com") # create a client for interacting with the public Amphora Data Repository client = AmphoraDataRepositoryClient(credentials) # get a reference to an Amphora amphora = client.create_amphora( name="Various Dogs", description="Contains labelled images of various types of dog breeds.") # pushes the dog images to the Amphora Data Repository, with attributes amphora.push_file("data/dogs/chihuahua.jpg", attributes={ 'breed': 'chihuahua', 'size': 'small', 'primaryColour': 'brown' }) amphora.push_file("data/dogs/german-shepherd.jpg", attributes={ 'breed': 'german-shepherd', 'size': 'large', 'primaryColour': 'brown' }) amphora.push_file("data/dogs/golden-retriever.jpg",
import os from datetime import datetime, timedelta ## Set up log metrics start = time.time() sep = '_' experimentId = 0 mlflow.set_tracking_uri("your_mlflow_address") runName = sep.join(['Job_at', str(datetime.utcnow())]) #mlflow.start_run(experiment_id=experimentId, run_name =runName) mlflow.log_metric("time_to_complete", 0) mlflow.log_metric("amphoras_uploaded", 0) mlflow.log_metric("run_complete", 0) # Set up connection to amphoradata.com credentials = Credentials(username=os.getenv(username), password=os.getenv(password)) client = AmphoraDataRepositoryClient(credentials) cnt = 0 for i in range(Some_number): # Get the amphora you want to push data to amphora = client.get_amphora(Amphora_id) # Connect to original data source # Add code/module as needed # Do analytics/transforms on data # Add code/module as needed # Push to Amphora