def test_hits_at_n_score(): y_pred_true = np.array([[[0, 1, 0], [.32, .84, .73]], [[0, 1, 0], [.66, .11, .33]]]) rankings = [] for y_pred_true_k in y_pred_true: rankings.append(rank_score(y_pred_true_k[0], y_pred_true_k[1])) hits_actual = hits_at_n_score(rankings, n=2) assert hits_actual == 0.5
def test_mrr_score(): y_pred_true = np.array([[[0, 1, 0], [.32, .84, .73]], [[0, 1, 0], [.66, .11, .33]]]) rankings = [] for y_pred_true_k in y_pred_true: rankings.append(rank_score(y_pred_true_k[0], y_pred_true_k[1])) mrr_actual = mrr_score(rankings) np.testing.assert_almost_equal(mrr_actual, 0.66666, decimal=5)
def test_rank_score(): y_pred = np.array([.434, .65, .21, .84]) y_true = np.array([0, 0, 1, 0]) rank_actual = rank_score(y_true, y_pred) assert rank_actual == 4