#if deceased population is higher then 1.000.000 people, classify as 1 classes[result[:, -1] > 1000000] = 1 return classes #load data fn = r'./data/1000 flu cases.tar.gz' results = load_results(fn) experiments, results = results #extract results for 1 policy logical = experiments['policy'] == 'no policy' new_experiments = experiments[ logical ] new_results = {} for key, value in results.items(): new_results[key] = value[logical] results = (new_experiments, new_results) #perform cart on modified results tuple cart_alg = cart.setup_cart(results, classify, mass_min=0.05) cart_alg.build_tree() #print cart to std_out print cart_alg.stats_to_dataframe() print cart_alg.boxes_to_dataframe() #visualize cart_alg.display_boxes(together=True) plt.show()
def test_setup_cart(self): results = test_utilities.load_flu_data() cart_algorithm = cart.setup_cart(results, flu_classify, mass_min=0.05)
def test_setup_cart(self): results = util.load_flu_data() cart_algorithm = cart.setup_cart(results, flu_classify, mass_min=0.05)
classes[result[:, -1] > 1000000] = 1 return classes #load data fn = r'./data/1000 flu cases.tar.gz' results = load_results(fn) experiments, results = results #extract results for 1 policy logical = experiments['policy'] == 'no policy' new_experiments = experiments[logical] new_results = {} for key, value in results.items(): new_results[key] = value[logical] results = (new_experiments, new_results) #perform cart on modified results tuple cart_alg = cart.setup_cart(results, classify, mass_min=0.05) cart_alg.build_tree() #print cart to std_out print cart_alg.stats_to_dataframe() print cart_alg.boxes_to_dataframe() #visualize cart_alg.display_boxes(together=True) plt.show()