示例#1
0
 def locate_peaks(self):
     peaks = {}
     for idx in xrange(self.numfiles):
         self.set_active_index(idx)
         CC = cv_funcs.xcorr(self.template_data.get_data("imagedata"),
                             self.get_active_image())
         #
         pks = pc.two_dim_findpeaks((CC - CC.min()) * 255, xc_filter=False)
         pks[:, 2] = pks[:, 2] / 255 + CC.min()
         peaks[self.get_active_name()] = pks
     self.peaks = peaks
示例#2
0
 def locate_peaks(self):
     peaks={}
     for idx in xrange(self.numfiles):
         self.set_active_index(idx)
         CC = cv_funcs.xcorr(self.template_data.get_data("imagedata"),
                                 self.get_active_image())
         # 
         pks=pc.two_dim_findpeaks((CC-CC.min())*255, xc_filter=False)
         pks[:,2]=pks[:,2]/255+CC.min()
         peaks[self.get_active_name()]=pks
     self.peaks=peaks
示例#3
0
 def locate_peaks(self):
     peaks={}
     for idx in xrange(self.numfiles):
         self.set_active_index(idx)
         CC = cv_funcs.xcorr(self.template_data.get_data("imagedata"),
                                 self.get_active_image())
         # 
         pks=pc.two_dim_findpeaks((CC-CC.min())*255, medfilt_radius=None, alpha=1,
                                  coords_list=[],
                                  )
         pks=pc.flatten_peak_list(pks)
         pks[:,2]=pks[:,2]/255+CC.min()
         peaks[self.get_active_name()]=pks
     self.peaks=peaks
示例#4
0
 def _peak_attribs_stack(self, stack, peak_width, target_locations=None,
                        target_neighborhood=20, medfilt_radius=5,
                        mask = True):
     """
     Characterizes the peaks in a stack of images.
 
         Parameters:
         ----------
 
         peak_width : int (required)
                 expected peak width.  Too big, and you'll include other peaks
                 in measurements.
 
         target_locations : numpy array (n x 2)
                 array of n target locations.  If left as None, will create 
                 target locations by locating peaks on the average image of the stack.
                 default is None (peaks detected from average image)
 
         img_size : tuple, 2 elements
                 (width, height) of images in image stack.
 
         target_neighborhood : int
                 pixel neighborhood to limit peak search to.  Peaks outside the
                 square defined by 2x this value around the peak will be excluded
                 from any fitting.  
 
         medfilt_radius : int (optional)
                 median filter window to apply to smooth the data
                 (see scipy.signal.medfilt)
                 if 0, no filter will be applied.
                 default is set to 5
 
        Returns:
        -------
        2D  numpy array:
         - One column per image
         - 9 rows per peak located
             0,1 - location
             2,3 - difference between location and target location
             4 - height
             5 - orientation
             6 - eccentricity
             7,8 - skew X, Y, respectively
 
     """
     avgImage=np.average(stack,axis=0)
     if target_locations is None:
         # get peak locations from the average image
         # an initial value for the peak width of 11 pixels works
         #   OK to find initial peaks.  We determine a proper value
         #   soon.
         target_locations=pc.two_dim_findpeaks(avgImage, 10)
     
     peak_width = 0.75*pc.min_peak_distance(target_locations)
     if peak_width < 10:
         peak_width = 10        
 
     if mask:
         mask = pc.draw_mask(avgImage.shape,
                             peak_width/2.0,
                             target_locations)            
         stack *= mask
     # get all peaks on all images
     peaks=pc.stack_coords(stack, peak_width=peak_width)
     # two loops here - outer loop loops over images (i index)
     # inner loop loops over target peak locations (j index)
     peak_locations=np.array([[pc.best_match(peaks[:,:,i], 
                                          target_locations[j,:2], 
                                          target_neighborhood) \
                               for i in xrange(peaks.shape[2])] \
                               for j in xrange(target_locations.shape[0])])
 
     # pre-allocate result array.  7 rows for each peak, 1 column for each image
     rlt = np.zeros((9*peak_locations.shape[0],stack.shape[0]))
     rlt_tmp = np.zeros((peak_locations.shape[0],7))
     
     progress = ProgressDialog(title="Peak characterization progress", 
                               message="Characterizing peaks on %d cells"%stack.shape[0], 
                               max=int(stack.shape[0]), show_time=True, can_cancel=False)
     progress.open()
     
     for i in xrange(stack.shape[0]):
         progress.update(int(i+1))
         rlt_tmp=pc.peak_attribs_image(stack[i,:,:], 
                                    target_locations=peak_locations[:,i,:], 
                                    peak_width=peak_width, 
                                    medfilt_radius=medfilt_radius, 
                                    )
         diff_coords=target_locations[:,:2]-rlt_tmp[:,:2]
         for j in xrange(target_locations.shape[0]):
             # peak position
             rlt[ j*9   : j*9+2 ,i] = rlt_tmp[j,:2]
             # difference in peak position relative to average
             rlt[ j*9+2 : j*9+4 ,i] = diff_coords[j]
             # height
             rlt[ j*9+4         ,i]=rlt_tmp[j,2]
             # orientation
             rlt[ j*9+5         ,i]=rlt_tmp[j,3]
             # eccentricity
             rlt[ j*9+6         ,i]=rlt_tmp[j,4]
             # skew (x and y)
             rlt[ j*9+7 : j*9+9 ,i]=rlt_tmp[j,5:]
     return rlt
示例#5
0
 def characterize(self, target_locations=None, 
                  target_neighborhood=20, 
                  medfilt_radius=5):
     #print "Main thread?" 
     #print Application.instance().is_main_thread()
     # disable the UI while we're running
     self._toggle_UI(False)
     #print 
     try:
         # wipe out old results
         self.chest.removeNode('/cell_peaks')        
     except:
         # any errors will be because the table doesn't exist. That's OK.
         pass        
     # locate peaks on the average image to use as target locations.
     #   also determines the number of peaks, which in turn determines
     #   the table columns.
     target_locations = pc.two_dim_findpeaks(self._get_average_image(),
                                             )[:,:2]
     self.numpeaks = int(target_locations.shape[0])
     # generate a list of column names
     names = [('x%i, y%i, dx%i, dy%i, h%i, o%i, e%i, sx%i, sy%i' % ((x,)*9)).split(', ') 
              for x in xrange(self.numpeaks)]
     # flatten that from a list of lists to a simple list
     names = [item for sublist in names for item in sublist]
     # make tuples of each column name and 'f8' for the data type
     dtypes = zip(names, ['f8', ] * self.numpeaks*9)
     # prepend the filename and index columns
     dtypes = [('filename', '|S250'), ('file_idx', 'i4'), ('omit', 'bool')] + dtypes
     # create an empty recarray with our data type
     desc = np.recarray((0,), dtype=dtypes)
     # create the table using the empty description recarray
     self.chest.createTable(self.chest.root,
                            'cell_peaks', description=desc)        
     # for each file in the cell_data group, run analysis.
     nodes = self.chest.listNodes('/cells')
     node_names = [node.name for node in nodes]
     progress = ProgressDialog(title="Peak characterization progress", 
                               message="Characterizing peaks on %d images"%(len(node_names)-2),
                               max=len(node_names)-1, show_time=True, can_cancel=False)
     progress.open()
     file_progress=0
     for node in node_names:
         # exclude some nodes
         if node == 'template':
             continue
         cell_data = self.get_cell_set(node)
         data = np.zeros((cell_data.shape[0]),dtype=dtypes)
         data['filename'] = node
         data['file_idx'] = np.arange(cell_data.shape[0])
         # might want to tweak this loop or cythonize for speed...
         attribs = self._peak_attribs_stack(cell_data,
                         peak_width=self.peak_width, 
                         target_locations=target_locations,
                         target_neighborhood=target_neighborhood,
                         medfilt_radius=medfilt_radius)
         attribs = attribs.T
         # for each column name, copy in the data
         for name_idx in xrange(len(names)):
             data[names[name_idx]] = attribs[:, name_idx]
         # add the data to the table
         self.chest.root.cell_peaks.append(data)
         self.chest.root.cell_peaks.flush()
         file_progress+=1
         progress.update(file_progress)            
     # add an attribute for the total number of peaks recorded
     self.chest.setNodeAttr('/cell_peaks','number_of_peaks', self.numpeaks)
     self.chest.root.cell_peaks.flush()
     self.chest.flush()
     self._can_show_peak_ids = True
     self.parent.image_controller.update_peak_map_choices()
     self._progress_value = 0
     self.log_action(action="Characterize peaks", 
                     target_locations=target_locations, 
                     target_neighborhood=target_neighborhood, 
                     medfilt_radius=medfilt_radius)
     self._toggle_UI(True)
示例#6
0
 def map_global_peaks_to_cells(self):        
     try:
         # wipe out old results
         self.chest.remove_node('/cell_peaks')        
     except:
         # any errors will be because the table doesn't exist. That's OK.
         pass                
     # get the average cell image and find peaks on it
     peaks=pc.two_dim_findpeaks(self.cell_controller.get_average_cell(), 
                                xc_filter=False, kill_edges=False)
     # generate a list of column names
     names = [('x%i, y%i, dx%i, dy%i, h%i, o%i, e%i, sx%i, sy%i' % ((x,)*9)).split(', ') 
              for x in xrange(peaks.shape[0])]
     # flatten that from a list of lists to a simple list
     names = [item for sublist in names for item in sublist]
     # make tuples of each column name and 'f8' for the data type
     dtypes = zip(names, ['f8', ] * peaks.shape[0]*9)
     # prepend the filename and index columns
     dtypes = [('filename', '|S250'), ('file_idx', 'i4'), ('omit', 'bool')] + dtypes
     # create an empty recarray with our data type
     desc = np.recarray((0,), dtype=dtypes)
     # create the table using the empty description recarray
     self.chest.create_table(self.chest.root,
                            'cell_peaks', description=desc)
     
     self.chest.set_node_attr('/cell_peaks','number_of_peaks', peaks.shape[0])
     self.chest.flush()
     
     # loop over each peak, finding the peak that best matches this cell's position
     #     plus the offset for the peak.
     for node in self.image_controller.get_node_iterator():
         cell_data = self.cell_controller.get_cell_set(node.name)
         data = np.zeros((cell_data.shape[0]),dtype=dtypes)
         data["filename"] = node.name
         data['file_idx'] = np.arange(cell_data.shape[0])
         for idx, peak in enumerate(peaks):            
             #TODO: need to rework this whole get_expression_data concept.  It is
             #    a column accessor.
             target_x = self.image_controller.get_expression_data("x_coordinate", 
                                                 table_loc="/cell_description",
                                                 filename=node.name)+peak[0]
             target_y = self.image_controller.get_expression_data("y_coordinate", 
                                                 table_loc="/cell_description",
                                                 filename=node.name)+peak[1]
             if target_x.shape[0]>0:
                 chars = self.find_best_matching_global_peaks(np.array([target_x,target_y]).T, 
                                                              node.name)
                 # add the peak ids (or data) to table representing cell peak characteristics
                 
                 
                 data["x%i"%idx] = chars["x"]-target_x+peak[0]
                 data["y%i"%idx] = chars["y"]-target_y+peak[1]
                 data["dx%i"%idx] = chars["x"]-target_x
                 data["dy%i"%idx] = chars["y"]-target_y
                 data["h%i"%idx] = chars["h"]
                 data["o%i"%idx] = chars["o"]
                 data["e%i"%idx] = chars["e"]
                 data["sx%i"%idx] = chars["sx"]
                 data["sy%i"%idx] = chars["sy"]
             
         
         # commit the data to the table
         self.chest.root.cell_peaks.append(data)
         self.chest.root.cell_peaks.flush()
     self.chest.flush()
     self.cell_controller._can_show_peak_ids=True
         
     
示例#7
0
    def map_global_peaks_to_cells(self):
        try:
            # wipe out old results
            self.chest.remove_node('/cell_peaks')
        except:
            # any errors will be because the table doesn't exist. That's OK.
            pass
        # get the average cell image and find peaks on it
        peaks = pc.two_dim_findpeaks(self.cell_controller.get_average_cell(),
                                     xc_filter=False,
                                     kill_edges=False)
        # generate a list of column names
        names = [('x%i, y%i, dx%i, dy%i, h%i, o%i, e%i, sx%i, sy%i' %
                  ((x, ) * 9)).split(', ') for x in xrange(peaks.shape[0])]
        # flatten that from a list of lists to a simple list
        names = [item for sublist in names for item in sublist]
        # make tuples of each column name and 'f8' for the data type
        dtypes = zip(names, [
            'f8',
        ] * peaks.shape[0] * 9)
        # prepend the filename and index columns
        dtypes = [('filename', '|S250'), ('file_idx', 'i4'),
                  ('omit', 'bool')] + dtypes
        # create an empty recarray with our data type
        desc = np.recarray((0, ), dtype=dtypes)
        # create the table using the empty description recarray
        self.chest.create_table(self.chest.root,
                                'cell_peaks',
                                description=desc)

        self.chest.set_node_attr('/cell_peaks', 'number_of_peaks',
                                 peaks.shape[0])
        self.chest.flush()

        # loop over each peak, finding the peak that best matches this cell's position
        #     plus the offset for the peak.
        for node in self.image_controller.get_node_iterator():
            cell_data = self.cell_controller.get_cell_set(node.name)
            data = np.zeros((cell_data.shape[0]), dtype=dtypes)
            data["filename"] = node.name
            data['file_idx'] = np.arange(cell_data.shape[0])
            for idx, peak in enumerate(peaks):
                #TODO: need to rework this whole get_expression_data concept.  It is
                #    a column accessor.
                target_x = self.image_controller.get_expression_data(
                    "x_coordinate",
                    table_loc="/cell_description",
                    filename=node.name) + peak[0]
                target_y = self.image_controller.get_expression_data(
                    "y_coordinate",
                    table_loc="/cell_description",
                    filename=node.name) + peak[1]
                if target_x.shape[0] > 0:
                    chars = self.find_best_matching_global_peaks(
                        np.array([target_x, target_y]).T, node.name)
                    # add the peak ids (or data) to table representing cell peak characteristics

                    data["x%i" % idx] = chars["x"] - target_x + peak[0]
                    data["y%i" % idx] = chars["y"] - target_y + peak[1]
                    data["dx%i" % idx] = chars["x"] - target_x
                    data["dy%i" % idx] = chars["y"] - target_y
                    data["h%i" % idx] = chars["h"]
                    data["o%i" % idx] = chars["o"]
                    data["e%i" % idx] = chars["e"]
                    data["sx%i" % idx] = chars["sx"]
                    data["sy%i" % idx] = chars["sy"]

            # commit the data to the table
            self.chest.root.cell_peaks.append(data)
            self.chest.root.cell_peaks.flush()
        self.chest.flush()
        self.cell_controller._can_show_peak_ids = True