示例#1
0
def main():
    train_alignment, train_reviews = getdata.readFiles("train.npz")
    train_alignment = getdata.decode(train_alignment)
    # train_alignment = getdata.describeLabels(train_alignment)
    train_reviews = getdata.decode(train_reviews)

    test_align, test_reviews = getdata.readFiles("test.npz")
    test_align = getdata.decode(test_align)
    # test_align = getdata.describeLabels(test_align)
    test_reviews = getdata.decode(test_reviews)

    model = analyze.train(train_reviews, test_reviews, train_alignment)
    # analyze.predict(test_reviews,model)
    analyze.predict(test_reviews, test_align, model)
def set_d(file, Kernel, df, df1):
	cons = 1.19
	eps = 0.008
	gam = 0.707
	p=1



	predict(df, Kernel, cons, eps, p, gam, "ARCHITECTURE2")
	predict(df1, Kernel, cons, eps, p, gam, "ARCHITECTURE1")




	print("====================================================")
示例#3
0
async def receiver(websocket, path):
    """
    Socket that handles segmentation and predict queries
    INPUT: websocket - the tcp connection 
           path - path to the image
    OUTPUT: none (except this function sends result back to nodejs client)
    """
    jsonString = await websocket.recv()
    jsonObject = json.loads(jsonString)
    print(jsonObject["type"])
    if (jsonObject["type"] == "segmentation"):
        filename = jsonObject["filename"]
        path = "../communication/rawimage/" + filename
        norm_points = segmentation(path)
        obj = {
            "type": "segmentation",
            "boxes": norm_points,
            "iou": 0.65,
        }
        string = json.dumps(obj)
        await websocket.send(string)
    if (jsonObject["type"] == "predict"):
        filename = jsonObject["filename"]
        path = "../communication/rawimage/" + filename
        global model
        norm_points, labels, percentages = predict(model, path)
        print("done")
        obj = {
            "type": "predict",
            "boxes": norm_points,
            "labels": labels,
        }
        string = json.dumps(obj)
        print("sent")
        await websocket.send(string)
def set_e(file, Kernel, df, df1):
	cons = 1.00
	eps = 0.011
	gam = 0.841
	p=1




	predict(df, Kernel, cons, eps, p, gam, "ARCHITECTURE2")
	predict(df1, Kernel, cons, eps, p, gam, "ARCHITECTURE1")




	print("====================================================")
def set_a(file, Kernel, df, df1):
	cons = 26.91
	eps = 0.0004
	gam = 0.105
	p=1



	predict(df, Kernel, cons, eps, p, gam, "ARCHITECTURE2")
	predict(df1, Kernel, cons, eps, p, gam, "ARCHITECTURE1")





	print("====================================================")
def set_c(file, Kernel, df, df1):
	cons = 1.41
	eps = 0.006
	gam = 0.297
	p=1




	#validate(df, Kernel, cons, eps, p, gam)
	predict(df, Kernel, cons, eps, p, gam, "ARCHITECTURE2")
	predict(df1, Kernel, cons, eps, p, gam, "ARCHITECTURE1")




	print("====================================================")
def set_f(file, Kernel, df, df1):
	cons = 1.00
	eps = 0.011
	gam = 0.189
	p=1




	#validate(df, Kernel, cons, eps, p, gam)
	predict(df, Kernel, cons, eps, p, gam, "ARCHITECTURE2")
	predict(df1, Kernel, cons, eps, p, gam, "ARCHITECTURE1")




	print("====================================================")
示例#8
0
    inputs, targets = dataset()

    model.train()
    optimizer.zero_grad()

    x = torch.tensor(inputs).to(device)
    y = torch.tensor(targets).to(device)

    logits, (state_h, state_c) = model(x, (state_h, state_c))

    loss = criterion(logits.transpose(1, 2), y)

    loss_value = loss.item()
    loss.backward()

    state_h = state_h.detach()
    state_c = state_c.detach()

    torch.nn.utils.clip_grad_norm_(model.parameters(), flags.gradients_norm)

    optimizer.step()

    if iterator % 100 == 0:
        print('Epoch: {}/{}'.format(epoch, flags.epochs),
              'Iteration: {}'.format(iterator), 'Loss: {}'.format(loss_value))

    if iterator % (epoch * flags.max_batch) == 0:
        predict(device, model, dataset.vocabulary, top_k=5)
        torch.save(model.state_dict(),
                   'LSTM-word-level/states_testing/epoch-{}.pth'.format(epoch))