示例#1
0
    def __init__(self, system, config):
        TestFrame.__init__(self, system, config)

        self.uin = Algeb(v_str='-10',
                         e_str='(dae_t - 10) - uin',
                         tex_name='u_{in}')
        self.DB = DeadBand1(self.uin, center=0, lower=-5, upper=5)
示例#2
0
 def __init__(self, system, config):
     HYGOVModel.__init__(self, system, config)
     self.DB = DeadBand1(
         u=self.wd,
         center=0.0,
         lower=self.dbL,
         upper=self.dbU,
         tex_name='DB',
         info='deadband for speed deviation',
     )
     self.pd.e_str = 'ue * (- DB_y + pref + paux - R * dg) - pd'
示例#3
0
 def __init__(self, system, config):
     TGOV1Model.__init__(self, system, config)
     self.DB = DeadBand1(
         u=self.wd,
         center=0.0,
         lower=self.dbL,
         upper=self.dbU,
         tex_name='DB',
         info='deadband for speed deviation',
     )
     self.pd.e_str = 'ue * (-DB_y + pref + paux) * gain - pd'
     self.pout.e_str = '(LL_y - Dt * DB_y) - pout'
示例#4
0
文件: pvd1.py 项目: treymingee/andes
    def __init__(self, system, config):
        Model.__init__(self, system, config)
        self.flags.tds = True
        self.group = 'DG'

        self.config.add(OrderedDict((('plim', 0),
                                     )))

        self.config.add_extra('_help',
                              plim='enable input power limit check bound by [0, pmx]',
                              )
        self.config.add_extra('_tex',
                              plim='P_{lim}',
                              )
        self.config.add_extra('_alt',
                              plim=(0, 1),
                              )

        self.SWPQ = Switcher(u=self.pqflag, options=(0, 1), tex_name='SW_{PQ}', cache=True)

        self.buss = DataSelect(self.igreg, self.bus,
                               info='selected bus (bus or igreg)',
                               )

        self.busfreq = DeviceFinder(self.busf, link=self.buss, idx_name='bus')

        # --- initial values from power flow ---
        # a : bus voltage angle
        # v : bus voltage magnitude
        # p0s : active power from connected static PV generator
        # q0s : reactive power from connected static PV generator
        # pref0 : initial active power set point for the PVD1 device
        # qref0 : initial reactive power set point for the PVD1 device

        self.a = ExtAlgeb(model='Bus', src='a', indexer=self.buss, tex_name=r'\theta',
                          info='bus (or igreg) phase angle',
                          unit='rad.',
                          e_str='-Ipout_y * v * u',
                          ename='P',
                          tex_ename='P',
                          )

        self.v = ExtAlgeb(model='Bus', src='v', indexer=self.buss, tex_name='V',
                          info='bus (or igreg) terminal voltage',
                          unit='p.u.',
                          e_str='-Iqout_y * v * u',
                          ename='Q',
                          tex_ename='Q',
                          )

        self.p0s = ExtService(model='StaticGen',
                              src='p',
                              indexer=self.gen,
                              tex_name='P_{0s}',
                              info='Initial P from static gen',
                              )
        self.q0s = ExtService(model='StaticGen',
                              src='q',
                              indexer=self.gen,
                              tex_name='Q_{0s}',
                              info='Initial Q from static gen',
                              )
        # --- calculate the initial P and Q for this distributed device ---
        self.pref0 = ConstService(v_str='gammap * p0s', tex_name='P_{ref0}',
                                  info='Initial P for the PVD1 device',
                                  )
        self.qref0 = ConstService(v_str='gammaq * q0s', tex_name='Q_{ref0}',
                                  info='Initial Q for the PVD1 device',
                                  )

        # frequency measurement variable `f`
        self.f = ExtAlgeb(model='FreqMeasurement', src='f', indexer=self.busfreq, export=False,
                          info='Bus frequency', unit='p.u.',
                          )

        self.fHz = Algeb(info='frequency in Hz',
                         v_str='fn * f', e_str='fn * f - fHz',
                         unit='Hz',
                         tex_name='f_{Hz}',
                         )

        # --- frequency branch ---
        self.FL1 = Limiter(u=self.fHz, lower=self.ft0, upper=self.ft1,
                           info='Under frequency comparer', no_warn=True,
                           )
        self.FL2 = Limiter(u=self.fHz, lower=self.ft2, upper=self.ft3,
                           info='Over frequency comparer', no_warn=True,
                           )

        self.Kft01 = ConstService(v_str='1/(ft1 - ft0)', tex_name='K_{ft01}')

        self.Ffl = Algeb(info='Coeff. for under frequency',
                         v_str='FL1_zi * Kft01 * (fHz - ft0) + FL1_zu',
                         e_str='FL1_zi * Kft01 * (fHz - ft0) + FL1_zu - Ffl',
                         tex_name='F_{fl}',
                         discrete=self.FL1,
                         )

        self.Kft23 = ConstService(v_str='1/(ft3 - ft2)', tex_name='K_{ft23}')

        self.Ffh = Algeb(info='Coeff. for over frequency',
                         v_str='FL2_zl + FL2_zi * (1 + Kft23 * (ft2 - fHz))',
                         e_str='FL2_zl + FL2_zi * (1 + Kft23 * (ft2 - fHz)) - Ffh',
                         tex_name='F_{fh}',
                         discrete=self.FL2,
                         )

        self.Fdev = Algeb(info='Frequency deviation',
                          v_str='fn - fHz', e_str='fn - fHz - Fdev',
                          unit='Hz', tex_name='f_{dev}',
                          )

        self.DB = DeadBand1(u=self.Fdev, center=0.0, lower=self.fdbd, upper=0.0, gain=self.ddn,
                            info='frequency deviation deadband with gain',
                            )  # outputs   `Pdrp`
        self.DB.db.no_warn = True

        # --- Voltage flags ---
        self.VL1 = Limiter(u=self.v, lower=self.vt0, upper=self.vt1,
                           info='Under voltage comparer', no_warn=True,
                           )
        self.VL2 = Limiter(u=self.v, lower=self.vt2, upper=self.vt3,
                           info='Over voltage comparer', no_warn=True,
                           )

        self.Kvt01 = ConstService(v_str='1/(vt1 - vt0)', tex_name='K_{vt01}')

        self.Fvl = Algeb(info='Coeff. for under voltage',
                         v_str='VL1_zi * Kvt01 * (v - vt0) + VL1_zu',
                         e_str='VL1_zi * Kvt01 * (v - vt0) + VL1_zu - Fvl',
                         tex_name='F_{vl}',
                         discrete=self.VL1,
                         )

        self.Kvt23 = ConstService(v_str='1/(vt3 - vt2)', tex_name='K_{vt23}')

        self.Fvh = Algeb(info='Coeff. for over voltage',
                         v_str='VL2_zl + VL2_zi * (1 + Kvt23 * (vt2 - v))',
                         e_str='VL2_zl + VL2_zi * (1 + Kvt23 * (vt2 - v)) - Fvh',
                         tex_name='F_{vh}',
                         discrete=self.VL2,
                         )
        # --- sensed voltage with lower limit of 0.01 ---
        self.VLo = Limiter(u=self.v, lower=0.01, upper=999, no_upper=True,
                           info='Voltage lower limit (0.01) flag',
                           )

        self.vp = Algeb(tex_name='V_p',
                        info='Sensed positive voltage',
                        v_str='v * VLo_zi + 0.01 * VLo_zl',
                        e_str='v * VLo_zi + 0.01 * VLo_zl - vp',
                        )

        self.Pext0 = ConstService(info='External additional signal added to Pext',
                                  tex_name='P_{ext0}',
                                  v_str='0',
                                  )

        self.Pext = Algeb(tex_name='P_{ext}',
                          info='External power signal (for AGC)',
                          v_str='u * Pext0',
                          e_str='u * Pext0 - Pext'
                          )

        self.Pref = Algeb(tex_name='P_{ref}',
                          info='Reference power signal (for scheduling setpoint)',
                          v_str='u * pref0',
                          e_str='u * pref0 - Pref'
                          )

        self.Psum = Algeb(tex_name='P_{tot}',
                          info='Sum of P signals',
                          v_str='u * (Pext + Pref + DB_y)',
                          e_str='u * (Pext + Pref + DB_y) - Psum',
                          )  # `DB_y` is `Pdrp` (f droop)

        self.PHL = Limiter(u=self.Psum, lower=0.0, upper=self.pmx,
                           enable=self.config.plim,
                           info='limiter for Psum in [0, pmx]',
                           )

        self.Vcomp = VarService(v_str='abs(v*exp(1j*a) + (1j * xc) * (Ipout_y + 1j * Iqout_y))',
                                info='Voltage before Xc compensation',
                                tex_name='V_{comp}'
                                )

        self.Vqu = ConstService(v_str='v1 - (qref0 - qmn) / dqdv',
                                info='Upper voltage bound => qmx',
                                tex_name='V_{qu}',
                                )

        self.Vql = ConstService(v_str='v0 + (qmx - qref0) / dqdv',
                                info='Lower voltage bound => qmn',
                                tex_name='V_{ql}',
                                )

        self.VQ1 = Limiter(u=self.Vcomp, lower=self.Vql, upper=self.v0,
                           info='Under voltage comparer for Q droop',
                           no_warn=True,
                           )

        self.VQ2 = Limiter(u=self.Vcomp, lower=self.v1, upper=self.Vqu,
                           info='Over voltage comparer for Q droop',
                           no_warn=True,
                           )

        Qdrp = 'u * VQ1_zl * qmx + VQ2_zu * qmn + ' \
               'u * VQ1_zi * (qmx + dqdv *(Vqu - Vcomp)) + ' \
               'u * VQ2_zi * (dqdv * (v1 - Vcomp)) '

        self.Qdrp = Algeb(tex_name='Q_{drp}',
                          info='External power signal (for AGC)',
                          v_str=Qdrp,
                          e_str=f'{Qdrp} - Qdrp',
                          discrete=(self.VQ1, self.VQ2),
                          )

        self.Qref = Algeb(tex_name=r'Q_{ref}',
                          info='Reference power signal (for scheduling setpoint)',
                          v_str='u * qref0',
                          e_str='u * qref0 - Qref'
                          )

        self.Qsum = Algeb(tex_name=r'Q_{tot}',
                          info='Sum of Q signals',
                          v_str=f'u * (qref0 + {Qdrp})',
                          e_str='u * (Qref + Qdrp) - Qsum',
                          discrete=(self.VQ1, self.VQ2),
                          )

        self.Ipul = Algeb(info='Ipcmd before Ip hard limit',
                          v_str='(Psum * PHL_zi + pmx * PHL_zu) / vp',
                          e_str='(Psum * PHL_zi + pmx * PHL_zu) / vp - Ipul',
                          tex_name='I_{p,ul}',
                          )

        self.Iqul = Algeb(info='Iqcmd before Iq hard limit',
                          v_str='Qsum / vp',
                          e_str='Qsum / vp - Iqul',
                          tex_name='I_{q,ul}',
                          )

        # --- Ipmax, Iqmax and Iqmin ---
        Ipmaxsq = "(Piecewise((0, Le(ialim**2 - Iqcmd_y**2, 0)), ((ialim**2 - Iqcmd_y ** 2), True)))"
        Ipmaxsq0 = "(Piecewise((0, Le(ialim**2 - (u*qref0/v)**2, 0)), ((ialim**2 - (u*qref0/v) ** 2), True)))"
        self.Ipmaxsq = VarService(v_str=Ipmaxsq, tex_name='I_{pmax}^2')
        self.Ipmaxsq0 = ConstService(v_str=Ipmaxsq0, tex_name='I_{pmax0}^2')

        self.Ipmax = Algeb(v_str='(SWPQ_s1 * ialim + SWPQ_s0 * sqrt(Ipmaxsq0))',
                           e_str='(SWPQ_s1 * ialim + SWPQ_s0 * sqrt(Ipmaxsq)) - Ipmax',
                           tex_name='I_{pmax}',
                           )

        Iqmaxsq = "(Piecewise((0, Le(ialim**2 - Ipcmd_y**2, 0)), ((ialim**2 - Ipcmd_y ** 2), True)))"
        Iqmaxsq0 = "(Piecewise((0, Le(ialim**2 - (u*pref0/v)**2, 0)), ((ialim**2 - (u*pref0/v) ** 2), True)))"
        self.Iqmaxsq = VarService(v_str=Iqmaxsq, tex_name='I_{qmax}^2')
        self.Iqmaxsq0 = ConstService(v_str=Iqmaxsq0, tex_name='I_{qmax0}^2')

        self.Iqmax = Algeb(v_str='SWPQ_s0 * ialim + SWPQ_s1 * sqrt(Iqmaxsq0)',
                           e_str='SWPQ_s0 * ialim + SWPQ_s1 * sqrt(Iqmaxsq) - Iqmax',
                           tex_name='I_{qmax}',
                           )

        # TODO: set option whether to use degrading gain
        # --- `Ipcmd` and `Iqcmd` ---
        self.Ipcmd = GainLimiter(u=self.Ipul,
                                 K=1, R='Fvl * Fvh * Ffl * Ffh * recflag + 1 * (1 - recflag)',
                                 lower=0, upper=self.Ipmax,
                                 info='Ip with limiter and coeff.',
                                 tex_name='I^{pcmd}',
                                 )

        self.Iqcmd = GainLimiter(u=self.Iqul,
                                 K=1, R='Fvl * Fvh * Ffl * Ffh * recflag + 1 * (1 - recflag)',
                                 lower=self.Iqmax, sign_lower=-1,
                                 upper=self.Iqmax,
                                 info='Iq with limiter and coeff.',
                                 tex_name='I^{qcmd}',
                                 )

        self.Ipout = Lag(u=self.Ipcmd_y, T=self.tip, K=1.0,
                         info='Output Ip filter',
                         )

        self.Iqout = Lag(u=self.Iqcmd_y, T=self.tiq, K=1.0,
                         info='Output Iq filter',
                         )
示例#5
0
    def __init__(self, system, config):
        Model.__init__(self, system, config)

        self.flags.tds = True
        self.group = 'RenExciter'

        self.config.add(OrderedDict((('kqs', 2),
                                     ('kvs', 2),
                                     ('tpfilt', 0.02),
                                     )))
        self.config.add_extra('_help',
                              kqs='Q PI controller tracking gain',
                              kvs='Voltage PI controller tracking gain',
                              tpfilt='Time const. for Pref filter',
                              )
        self.config.add_extra('_tex',
                              kqs='K_{qs}',
                              kvs='K_{vs}',
                              tpfilt='T_{pfilt}',
                              )

        # --- Sanitize inputs ---
        self.Imaxr = Replace(self.Imax, flt=lambda x: np.less_equal(x, 0), new_val=1e8,
                             tex_name='I_{maxr}')

        # --- Flag switchers ---
        self.SWPF = Switcher(u=self.PFFLAG, options=(0, 1), tex_name='SW_{PF}', cache=True)

        self.SWV = Switcher(u=self.VFLAG, options=(0, 1), tex_name='SW_{V}', cache=True)

        self.SWQ = Switcher(u=self.QFLAG, options=(0, 1), tex_name='SW_{V}', cache=True)

        self.SWP = Switcher(u=self.PFLAG, options=(0, 1), tex_name='SW_{P}', cache=True)

        self.SWPQ = Switcher(u=self.PQFLAG, options=(0, 1), tex_name='SW_{PQ}', cache=True)

        # --- External parameters ---
        self.bus = ExtParam(model='RenGen', src='bus', indexer=self.reg, export=False,
                            info='Retrieved bus idx', vtype=str, default=None,
                            )

        self.buss = DataSelect(self.busr, self.bus, info='selected bus (bus or busr)')

        self.gen = ExtParam(model='RenGen', src='gen', indexer=self.reg, export=False,
                            info='Retrieved StaticGen idx', vtype=str, default=None,
                            )

        self.Sn = ExtParam(model='RenGen', src='Sn', indexer=self.reg,
                           tex_name='S_n', export=False,
                           )

        # --- External variables ---
        self.a = ExtAlgeb(model='Bus',
                          src='a',
                          indexer=self.bus,
                          tex_name=r'\theta',
                          info='Bus voltage angle',
                          )

        self.v = ExtAlgeb(model='Bus',
                          src='v',
                          indexer=self.bus,
                          tex_name=r'V',
                          info='Bus voltage magnitude',
                          )  # check whether to use `bus` or `buss`

        self.Pe = ExtAlgeb(model='RenGen', src='Pe', indexer=self.reg, export=False,
                           info='Retrieved Pe of RenGen')

        self.Qe = ExtAlgeb(model='RenGen', src='Qe', indexer=self.reg, export=False,
                           info='Retrieved Qe of RenGen')

        self.Ipcmd = ExtAlgeb(model='RenGen', src='Ipcmd', indexer=self.reg, export=False,
                              info='Retrieved Ipcmd of RenGen',
                              e_str='-Ipcmd0 + IpHL_y',
                              )

        self.Iqcmd = ExtAlgeb(model='RenGen', src='Iqcmd', indexer=self.reg, export=False,
                              info='Retrieved Iqcmd of RenGen',
                              e_str='-Iqcmd0 - IqHL_y',
                              )

        self.p0 = ExtService(model='RenGen',
                             src='p0',
                             indexer=self.reg,
                             tex_name='P_0',
                             )
        self.q0 = ExtService(model='RenGen',
                             src='q0',
                             indexer=self.reg,
                             tex_name='Q_0',
                             )

        # Initial current commands
        self.Ipcmd0 = ConstService('p0 / v', info='initial Ipcmd')

        self.Iqcmd0 = ConstService('-q0 / v', info='initial Iqcmd')

        # --- Initial power factor angle ---
        # NOTE: if `p0` = 0, `pfaref0` = pi/2, `tan(pfaref0)` = inf
        self.pfaref0 = ConstService(v_str='atan2(q0, p0)', tex_name=r'\Phi_{ref0}',
                                    info='Initial power factor angle',
                                    )
        # flag devices with `p0`=0, which causes `tan(PF) = +inf`
        self.zp0 = ConstService(v_str='Eq(p0, 0)',
                                vtype=float,
                                tex_name='z_{p0}',
                                )

        # --- Discrete components ---
        self.Vcmp = Limiter(u=self.v, lower=self.Vdip, upper=self.Vup, tex_name='V_{cmp}',
                            info='Voltage dip comparator', equal=False,
                            )
        self.Volt_dip = VarService(v_str='1 - Vcmp_zi',
                                   info='Voltage dip flag; 1-dip, 0-normal',
                                   tex_name='z_{Vdip}',
                                   )

        # --- Equations begin ---
        self.s0 = Lag(u=self.v, T=self.Trv, K=1,
                      info='Voltage filter',
                      )
        self.VLower = Limiter(u=self.v, lower=0.01, upper=999, no_upper=True,
                              info='Limiter for lower voltage cap',
                              )
        self.vp = Algeb(tex_name='V_p',
                        info='Sensed lower-capped voltage',
                        v_str='v * VLower_zi + 0.01 * VLower_zl',
                        e_str='v * VLower_zi + 0.01 * VLower_zl - vp',
                        )

        self.pfaref = Algeb(tex_name=r'\Phi_{ref}',
                            info='power factor angle ref',
                            unit='rad',
                            v_str='pfaref0',
                            e_str='pfaref0 - pfaref',
                            )

        self.S1 = Lag(u='Pe', T=self.Tp, K=1, tex_name='S_1', info='Pe filter',
                      )

        # ignore `Qcpf` if `pfaref` is pi/2 by multiplying (1-zp0)
        self.Qcpf = Algeb(tex_name='Q_{cpf}',
                          info='Q calculated from P and power factor',
                          v_str='q0',
                          e_str='(1-zp0) * (S1_y * tan(pfaref) - Qcpf)',
                          diag_eps=True,
                          unit='p.u.',
                          )

        self.Qref = Algeb(tex_name='Q_{ref}',
                          info='external Q ref',
                          v_str='q0',
                          e_str='q0 - Qref',
                          unit='p.u.',
                          )

        self.PFsel = Algeb(v_str='SWPF_s0*Qref + SWPF_s1*Qcpf',
                           e_str='SWPF_s0*Qref + SWPF_s1*Qcpf - PFsel',
                           info='Output of PFFLAG selector',
                           )

        self.PFlim = Limiter(u=self.PFsel, lower=self.QMin, upper=self.QMax)

        self.Qerr = Algeb(tex_name='Q_{err}',
                          info='Reactive power error',
                          v_str='(PFsel*PFlim_zi + QMin*PFlim_zl + QMax*PFlim_zu) - Qe',
                          e_str='(PFsel*PFlim_zi + QMin*PFlim_zl + QMax*PFlim_zu) - Qe - Qerr',
                          )

        self.PIQ = PITrackAWFreeze(u=self.Qerr,
                                   kp=self.Kqp, ki=self.Kqi, ks=self.config.kqs,
                                   lower=self.VMIN, upper=self.VMAX,
                                   freeze=self.Volt_dip,
                                   )

        # If `VFLAG=0`, set the input as `Vref1` (see the NREL report)
        self.Vsel = GainLimiter(u='SWV_s0 * Vref1 + SWV_s1 * PIQ_y',
                                K=1, R=1,
                                lower=self.VMIN, upper=self.VMAX,
                                info='Selection output of VFLAG',
                                )

        # --- Placeholders for `Iqmin` and `Iqmax` ---

        self.s4 = LagFreeze(u='PFsel / vp', T=self.Tiq, K=1,
                            freeze=self.Volt_dip,
                            tex_name='s_4',
                            info='Filter for calculated voltage with freeze',
                            )

        # --- Upper portion - Iqinj calculation ---

        self.Verr = Algeb(info='Voltage error (Vref0)',
                          v_str='Vref0 - s0_y',
                          e_str='Vref0 - s0_y - Verr',
                          tex_name='V_{err}',
                          )
        self.dbV = DeadBand1(u=self.Verr, lower=self.dbd1, upper=self.dbd2,
                             center=0.0,
                             enable='DB_{V}',
                             info='Deadband for voltage error (ref0)'
                             )

        self.pThld = ConstService(v_str='Indicator(Thld > 0)', tex_name='p_{Thld}')

        self.nThld = ConstService(v_str='Indicator(Thld < 0)', tex_name='n_{Thld}')

        self.Thld_abs = ConstService(v_str='abs(Thld)', tex_name='|Thld|')

        self.fThld = ExtendedEvent(self.Volt_dip,
                                   t_ext=self.Thld_abs,
                                   )

        # Gain after dbB
        Iqv = "(dbV_y * Kqv)"
        Iqinj = f'{Iqv} * Volt_dip + ' \
                f'(1 - Volt_dip) * fThld * ({Iqv} * nThld + Iqfrz * pThld)'

        # state transition, output of Iqinj
        self.Iqinj = Algeb(v_str=Iqinj,
                           e_str=Iqinj + ' - Iqinj',
                           tex_name='I_{qinj}',
                           info='Additional Iq signal during under- or over-voltage',
                           )

        # --- Lower portion - active power ---
        self.wg = Algeb(tex_name=r'\omega_g',
                        info='Drive train generator speed',
                        v_str='1.0',
                        e_str='1.0 - wg',
                        )

        self.Pref = Algeb(tex_name='P_{ref}',
                          info='external P ref',
                          v_str='p0 / wg',
                          e_str='p0 / wg - Pref',
                          unit='p.u.',
                          )

        self.pfilt = LagRate(u=self.Pref, T=self.config.tpfilt, K=1,
                             rate_lower=self.dPmin, rate_upper=self.dPmax,
                             info='Active power filter with rate limits',
                             tex_name='P_{filt}',
                             )

        self.Psel = Algeb(tex_name='P_{sel}',
                          info='Output selection of PFLAG',
                          v_str='SWP_s1*wg*pfilt_y + SWP_s0*pfilt_y',
                          e_str='SWP_s1*wg*pfilt_y + SWP_s0*pfilt_y - Psel',
                          )

        # `s5_y` is `Pord`
        self.s5 = LagAWFreeze(u=self.Psel, T=self.Tpord, K=1,
                              lower=self.PMIN, upper=self.PMAX,
                              freeze=self.Volt_dip,
                              tex_name='s5',
                              )

        self.Pord = AliasState(self.s5_y)

        # --- Current limit logic ---

        self.kVq12 = ConstService(v_str='(Iq2 - Iq1) / (Vq2 - Vq1)',
                                  tex_name='k_{Vq12}',
                                  )
        self.kVq23 = ConstService(v_str='(Iq3 - Iq2) / (Vq3 - Vq2)',
                                  tex_name='k_{Vq23}',
                                  )
        self.kVq34 = ConstService(v_str='(Iq4 - Iq3) / (Vq4 - Vq3)',
                                  tex_name='k_{Vq34}',
                                  )

        self.zVDL1 = ConstService(v_str='(Vq1 <= Vq2) & (Vq2 <= Vq3) & (Vq3 <= Vq4) & '
                                        '(Iq1 <= Iq2) & (Iq2 <= Iq3) & (Iq3 <= Iq4)',
                                  tex_name='z_{VDL1}',
                                  info='True if VDL1 is in service',
                                  )

        self.VDL1 = Piecewise(u=self.s0_y,
                              points=('Vq1', 'Vq2', 'Vq3', 'Vq4'),
                              funs=('Iq1',
                                    f'({self.s0_y.name} - Vq1) * kVq12 + Iq1',
                                    f'({self.s0_y.name} - Vq2) * kVq23 + Iq2',
                                    f'({self.s0_y.name} - Vq3) * kVq34 + Iq3',
                                    'Iq4'),
                              tex_name='V_{DL1}',
                              info='Piecewise linear characteristics of Vq-Iq',
                              )

        self.kVp12 = ConstService(v_str='(Ip2 - Ip1) / (Vp2 - Vp1)',
                                  tex_name='k_{Vp12}',
                                  )
        self.kVp23 = ConstService(v_str='(Ip3 - Ip2) / (Vp3 - Vp2)',
                                  tex_name='k_{Vp23}',
                                  )
        self.kVp34 = ConstService(v_str='(Ip4 - Ip3) / (Vp4 - Vp3)',
                                  tex_name='k_{Vp34}',
                                  )

        self.zVDL2 = ConstService(v_str='(Vp1 <= Vp2) & (Vp2 <= Vp3) & (Vp3 <= Vp4) & '
                                        '(Ip1 <= Ip2) & (Ip2 <= Ip3) & (Ip3 <= Ip4)',
                                  tex_name='z_{VDL2}',
                                  info='True if VDL2 is in service',
                                  )

        self.VDL2 = Piecewise(u=self.s0_y,
                              points=('Vp1', 'Vp2', 'Vp3', 'Vp4'),
                              funs=('Ip1',
                                    f'({self.s0_y.name} - Vp1) * kVp12 + Ip1',
                                    f'({self.s0_y.name} - Vp2) * kVp23 + Ip2',
                                    f'({self.s0_y.name} - Vp3) * kVp34 + Ip3',
                                    'Ip4'),
                              tex_name='V_{DL2}',
                              info='Piecewise linear characteristics of Vp-Ip',
                              )

        self.fThld2 = ExtendedEvent(self.Volt_dip,
                                    t_ext=self.Thld2,
                                    extend_only=True,
                                    )

        self.VDL1c = VarService(v_str='Lt(VDL1_y, Imaxr)')

        self.VDL2c = VarService(v_str='Lt(VDL2_y, Imaxr)')

        # `Iqmax` not considering mode or `Thld2`
        Iqmax1 = '(zVDL1*(VDL1c*VDL1_y + (1-VDL1c)*Imaxr) + 1e8*(1-zVDL1))'

        # `Ipmax` not considering mode or `Thld2`
        Ipmax1 = '(zVDL2*(VDL2c*VDL2_y + (1-VDL2c)*Imaxr) + 1e8*(1-zVDL2))'

        Ipmax2sq0 = '(Imax**2 - Iqcmd0**2)'

        Ipmax2sq = '(Imax**2 - IqHL_y**2)'

        # `Ipmax20`-squared (non-negative)
        self.Ipmax2sq0 = ConstService(v_str=f'Piecewise((0, Le({Ipmax2sq0}, 0.0)), ({Ipmax2sq0}, True), \
                                              evaluate=False)',
                                      tex_name='I_{pmax20,nn}^2',
                                      )

        self.Ipmax2sq = VarService(v_str=f'Piecewise((0, Le({Ipmax2sq}, 0.0)), ({Ipmax2sq}, True), \
                                           evaluate=False)',
                                   tex_name='I_{pmax2}^2',
                                   )

        Ipmax = f'((1-fThld2) * (SWPQ_s0*sqrt(Ipmax2sq) + SWPQ_s1*{Ipmax1}))'

        Ipmax0 = f'((1-fThld2) * (SWPQ_s0*sqrt(Ipmax2sq0) + SWPQ_s1*{Ipmax1}))'

        self.Ipmax = Algeb(v_str=f'{Ipmax0}',
                           e_str=f'{Ipmax} + (fThld2 * Ipmaxh) - Ipmax',
                           tex_name='I_{pmax}',
                           diag_eps=True,
                           info='Upper limit on Ipcmd',
                           )

        self.Ipmaxh = VarHold(self.Ipmax, hold=self.fThld2)

        Iqmax2sq = '(Imax**2 - IpHL_y**2)'

        Iqmax2sq0 = '(Imax**2 - Ipcmd0**2)'  # initialization equation by using `Ipcmd0`

        self.Iqmax2sq0 = ConstService(v_str=f'Piecewise((0, Le({Iqmax2sq0}, 0.0)), ({Iqmax2sq0}, True), \
                                              evaluate=False)',
                                      tex_name='I_{qmax,nn}^2',
                                      )

        self.Iqmax2sq = VarService(v_str=f'Piecewise((0, Le({Iqmax2sq}, 0.0)), ({Iqmax2sq}, True), \
                                           evaluate=False)',
                                   tex_name='I_{qmax2}^2')

        self.Iqmax = Algeb(v_str=f'(SWPQ_s0*{Iqmax1} + SWPQ_s1*sqrt(Iqmax2sq0))',
                           e_str=f'(SWPQ_s0*{Iqmax1} + SWPQ_s1*sqrt(Iqmax2sq)) - Iqmax',
                           tex_name='I_{qmax}',
                           info='Upper limit on Iqcmd',
                           )

        self.Iqmin = ApplyFunc(self.Iqmax, lambda x: -x, cache=False,
                               tex_name='I_{qmin}',
                               info='Lower limit on Iqcmd',
                               )

        self.Ipmin = ConstService(v_str='0.0', tex_name='I_{pmin}',
                                  info='Lower limit on Ipcmd',
                                  )

        self.PIV = PITrackAWFreeze(u='Vsel_y - s0_y * SWV_s0',
                                   x0='-SWQ_s1 * Iqcmd0',
                                   kp=self.Kvp, ki=self.Kvi, ks=self.config.kvs,
                                   lower=self.Iqmin, upper=self.Iqmax,
                                   freeze=self.Volt_dip,
                                   )

        self.Qsel = Algeb(info='Selection output of QFLAG',
                          v_str='SWQ_s1 * PIV_y + SWQ_s0 * s4_y',
                          e_str='SWQ_s1 * PIV_y + SWQ_s0 * s4_y - Qsel',
                          tex_name='Q_{sel}',
                          )

        # `IpHL_y` is `Ipcmd`
        self.IpHL = GainLimiter(u='s5_y / vp',
                                K=1, R=1,
                                lower=self.Ipmin, upper=self.Ipmax,
                                )

        # `IqHL_y` is `Iqcmd`
        self.IqHL = GainLimiter(u='Qsel + Iqinj',
                                K=1, R=1,
                                lower=self.Iqmin, upper=self.Iqmax)
示例#6
0
    def __init__(self, system, config):
        Model.__init__(self, system, config)

        self.group = 'RenPlant'
        self.flags.tds = True

        self.config.add(OrderedDict((
            ('kqs', 2),
            ('ksg', 2),
            ('freeze', 1),
        )))

        self.config.add_extra(
            '_help',
            kqs='Tracking gain for reactive power PI controller',
            ksg='Tracking gain for active power PI controller',
            freeze='Voltage dip freeze flag; 1-enable, 0-disable',
        )
        self.config.add_extra('_tex',
                              kqs='K_{qs}',
                              ksg='K_{sg}',
                              freeze='f_{rz}')

        # --- from RenExciter ---
        self.reg = ExtParam(
            model='RenExciter',
            src='reg',
            indexer=self.ree,
            export=False,
            info='Retrieved RenGen idx',
            vtype=str,
            default=None,
        )
        self.Pext = ExtAlgeb(
            model='RenExciter',
            src='Pref',
            indexer=self.ree,
            info='Pref from RenExciter renamed as Pext',
            tex_name='P_{ext}',
        )

        self.Qext = ExtAlgeb(
            model='RenExciter',
            src='Qref',
            indexer=self.ree,
            info='Qref from RenExciter renamed as Qext',
            tex_name='Q_{ext}',
        )

        # --- from RenGen ---
        self.bus = ExtParam(
            model='RenGen',
            src='bus',
            indexer=self.reg,
            export=False,
            info='Retrieved bus idx',
            vtype=str,
            default=None,
        )

        self.buss = DataSelect(self.busr,
                               self.bus,
                               info='selected bus (bus or busr)')

        self.busfreq = DeviceFinder(self.busf, link=self.buss, idx_name='bus')

        # from Bus
        self.v = ExtAlgeb(
            model='Bus',
            src='v',
            indexer=self.buss,
            tex_name='V',
            info='Bus (or busr, if given) terminal voltage',
        )

        self.a = ExtAlgeb(
            model='Bus',
            src='a',
            indexer=self.buss,
            tex_name=r'\theta',
            info='Bus (or busr, if given) phase angle',
        )

        self.v0 = ExtService(
            model='Bus',
            src='v',
            indexer=self.buss,
            tex_name="V_0",
            info='Initial bus voltage',
        )

        # from BusFreq
        self.f = ExtAlgeb(model='FreqMeasurement',
                          src='f',
                          indexer=self.busfreq,
                          export=False,
                          info='Bus frequency',
                          unit='p.u.')

        # from Line
        self.bus1 = ExtParam(
            model='ACLine',
            src='bus1',
            indexer=self.line,
            export=False,
            info='Retrieved Line.bus1 idx',
            vtype=str,
            default=None,
        )

        self.bus2 = ExtParam(
            model='ACLine',
            src='bus2',
            indexer=self.line,
            export=False,
            info='Retrieved Line.bus2 idx',
            vtype=str,
            default=None,
        )
        self.r = ExtParam(
            model='ACLine',
            src='r',
            indexer=self.line,
            export=False,
            info='Retrieved Line.r',
            vtype=str,
            default=None,
        )

        self.x = ExtParam(
            model='ACLine',
            src='x',
            indexer=self.line,
            export=False,
            info='Retrieved Line.x',
            vtype=str,
            default=None,
        )

        self.v1 = ExtAlgeb(
            model='ACLine',
            src='v1',
            indexer=self.line,
            tex_name='V_1',
            info='Voltage at Line.bus1',
        )

        self.v2 = ExtAlgeb(
            model='ACLine',
            src='v2',
            indexer=self.line,
            tex_name='V_2',
            info='Voltage at Line.bus2',
        )

        self.a1 = ExtAlgeb(
            model='ACLine',
            src='a1',
            indexer=self.line,
            tex_name=r'\theta_1',
            info='Angle at Line.bus1',
        )

        self.a2 = ExtAlgeb(
            model='ACLine',
            src='a2',
            indexer=self.line,
            tex_name=r'\theta_2',
            info='Angle at Line.bus2',
        )

        # -- begin services ---

        self.Isign = CurrentSign(self.bus,
                                 self.bus1,
                                 self.bus2,
                                 tex_name='I_{sign}')

        Iline = '(Isign * (v1*exp(1j*a1) - v2*exp(1j*a2)) / (r + 1j*x))'

        self.Iline = VarService(
            v_str=Iline,
            vtype=complex,
            info='Complex current from bus1 to bus2',
            tex_name='I_{line}',
        )

        self.Iline0 = ConstService(
            v_str='Iline',
            vtype=complex,
            info='Initial complex current from bus1 to bus2',
            tex_name='I_{line0}',
        )

        Pline = 're(Isign * v1*exp(1j*a1) * conj((v1*exp(1j*a1) - v2*exp(1j*a2)) / (r + 1j*x)))'

        self.Pline = VarService(
            v_str=Pline,
            vtype=float,
            info='Complex power from bus1 to bus2',
            tex_name='P_{line}',
        )

        self.Pline0 = ConstService(
            v_str='Pline',
            vtype=float,
            info='Initial vomplex power from bus1 to bus2',
            tex_name='P_{line0}',
        )

        Qline = 'im(Isign * v1*exp(1j*a1) * conj((v1*exp(1j*a1) - v2*exp(1j*a2)) / (r + 1j*x)))'

        self.Qline = VarService(
            v_str=Qline,
            vtype=float,
            info='Complex power from bus1 to bus2',
            tex_name='Q_{line}',
        )

        self.Qline0 = ConstService(
            v_str='Qline',
            vtype=float,
            info='Initial complex power from bus1 to bus2',
            tex_name='Q_{line0}',
        )

        self.Rcs = NumSelect(
            self.Rc,
            self.r,
            info='Line R (Rc if provided, otherwise line.r)',
            tex_name='R_{cs}',
        )

        self.Xcs = NumSelect(
            self.Xc,
            self.x,
            info='Line X (Xc if provided, otherwise line.x)',
            tex_name='X_{cs}',
        )

        self.Vcomp = VarService(
            v_str='abs(v*exp(1j*a) - (Rcs + 1j * Xcs) * Iline)',
            info='Voltage after Rc/Xc compensation',
            tex_name='V_{comp}')

        self.SWVC = Switcher(u=self.VCFlag,
                             options=(0, 1),
                             tex_name='SW_{VC}',
                             cache=True)

        self.SWRef = Switcher(u=self.RefFlag,
                              options=(0, 1),
                              tex_name='SW_{Ref}',
                              cache=True)

        self.SWF = Switcher(u=self.Fflag,
                            options=(0, 1),
                            tex_name='SW_{F}',
                            cache=True)

        self.SWPL = Switcher(u=self.PLflag,
                             options=(0, 1),
                             tex_name='SW_{PL}',
                             cache=True)

        VCsel = '(SWVC_s1 * Vcomp + SWVC_s0 * (Qline * Kc + v))'

        self.Vref0 = ConstService(
            v_str='(SWVC_s1 * Vcomp + SWVC_s0 * (Qline0 * Kc + v))',
            tex_name='V_{ref0}',
        )

        self.s0 = Lag(
            VCsel,
            T=self.Tfltr,
            K=1,
            tex_name='s_0',
            info='V filter',
        )  # s0_y is the filter output of voltage deviation

        self.s1 = Lag(self.Qline, T=self.Tfltr, K=1, tex_name='s_1')

        self.Vref = Algeb(v_str='Vref0',
                          e_str='Vref0 - Vref',
                          tex_name='Q_{ref}')

        self.Qlinef = Algeb(v_str='Qline0',
                            e_str='Qline0 - Qlinef',
                            tex_name='Q_{linef}')

        Refsel = '(SWRef_s0 * (Qlinef - s1_y) + SWRef_s1 * (Vref - s0_y))'

        self.Refsel = Algeb(v_str=Refsel,
                            e_str=f'{Refsel} - Refsel',
                            tex_name='R_{efsel}')

        self.dbd = DeadBand1(
            u=self.Refsel,
            lower=self.dbd1,
            upper=self.dbd2,
            center=0.0,
            tex_name='d^{bd}',
        )

        # --- e Hardlimit and hold logic ---
        self.eHL = Limiter(
            u=self.dbd_y,
            lower=self.emin,
            upper=self.emax,
            tex_name='e_{HL}',
            info='Hardlimit on deadband output',
        )

        self.zf = VarService(
            v_str='Indicator(v < Vfrz) * freeze',
            tex_name='z_f',
            info='PI Q input freeze signal',
        )

        self.enf = Algeb(
            tex_name='e_{nf}',
            info='e Hardlimit output before freeze',
            v_str='dbd_y*eHL_zi + emax*eHL_zu + emin*eHL_zl',
            e_str='dbd_y*eHL_zi + emax*eHL_zu + emin*eHL_zl - enf',
        )

        # --- hold of `enf` when v < vfrz

        self.eHld = VarHold(
            u=self.enf,
            hold=self.zf,
            tex_name='e_{hld}',
            info='e Hardlimit output after conditional hold',
        )

        self.s2 = PITrackAW(
            u='eHld',
            kp=self.Kp,
            ki=self.Ki,
            ks=self.config.kqs,
            lower=self.Qmin,
            upper=self.Qmax,
            info='PI controller for eHL output',
            tex_name='s_2',
        )

        self.s3 = LeadLag(
            u=self.s2_y,
            T1=self.Tft,
            T2=self.Tfv,
            K=1,
            tex_name='s_3',
        )  # s3_y == Qext

        # Active power part

        self.s4 = Lag(
            self.Pline,
            T=self.Tp,
            K=1,
            tex_name='s_4',
            info='Pline filter',
        )

        self.Freq_ref = ConstService(v_str='1.0',
                                     tex_name='f_{ref}',
                                     info='Initial Freq_ref')
        self.ferr = Algeb(
            tex_name='f_{err}',
            info='Frequency deviation',
            unit='p.u. (Hz)',
            v_str='(Freq_ref - f)',
            e_str='(Freq_ref - f) - ferr',
        )

        self.fdbd = DeadBand1(
            u=self.ferr,
            center=0.0,
            lower=self.fdbd1,
            upper=self.fdbd2,
            tex_name='f^{dbd}',
            info='frequency error deadband',
        )

        self.fdlt0 = LessThan(
            self.fdbd_y,
            0.0,
            tex_name='f_{dlt0}',
            info='frequency deadband output less than zero',
        )

        fdroop = '(fdbd_y * Ddn * fdlt0_z1 + fdbd_y * Dup * fdlt0_z0)'

        self.Plant_pref = Algeb(
            tex_name='P_{ref}',
            info='Plant P ref',
            v_str='Pline0',
            e_str='Pline0 - Plant_pref',
        )

        self.Plerr = Algeb(
            tex_name='P_{lerr}',
            info='Pline error',
            v_str='- s4_y + Plant_pref',
            e_str='- s4_y + Plant_pref - Plerr',
        )

        self.Perr = Algeb(
            tex_name='P_{err}',
            info='Power error before fe limits',
            v_str=f'{fdroop} + Plerr * SWPL_s1',
            e_str=f'{fdroop} + Plerr * SWPL_s1 - Perr',
        )

        self.feHL = Limiter(
            self.Perr,
            lower=self.femin,
            upper=self.femax,
            tex_name='f_{eHL}',
            info='Limiter for power (frequency) error',
        )

        feout = '(Perr * feHL_zi + femin * feHL_zl + femax * feHL_zu)'
        self.s5 = PITrackAW(
            u=feout,
            kp=self.Kpg,
            ki=self.Kig,
            ks=self.config.ksg,
            lower=self.Pmin,
            upper=self.Pmax,
            tex_name='s_5',
            info='PI for fe limiter output',
        )

        self.s6 = Lag(
            u=self.s5_y,
            T=self.Tg,
            K=1,
            tex_name='s_6',
            info='Output filter for Pext',
        )

        Qext = '(s3_y)'

        Pext = '(SWF_s1 * s6_y)'

        self.Pext.e_str = Pext

        self.Qext.e_str = Qext